Spaces:
Running
Running
| import numpy as np | |
| import torch | |
| import time | |
| import threading | |
| import os | |
| import queue | |
| import torchaudio | |
| from scipy.spatial.distance import cosine | |
| from scipy.signal import resample | |
| import logging | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Simplified configuration parameters | |
| SILENCE_THRESHS = [0, 0.4] | |
| FINAL_TRANSCRIPTION_MODEL = "distil-large-v3" | |
| FINAL_BEAM_SIZE = 5 | |
| REALTIME_TRANSCRIPTION_MODEL = "distil-small.en" | |
| REALTIME_BEAM_SIZE = 5 | |
| TRANSCRIPTION_LANGUAGE = "en" | |
| SILERO_SENSITIVITY = 0.4 | |
| WEBRTC_SENSITIVITY = 3 | |
| MIN_LENGTH_OF_RECORDING = 0.7 | |
| PRE_RECORDING_BUFFER_DURATION = 0.35 | |
| # Speaker change detection parameters | |
| DEFAULT_CHANGE_THRESHOLD = 0.65 | |
| EMBEDDING_HISTORY_SIZE = 5 | |
| MIN_SEGMENT_DURATION = 1.5 | |
| DEFAULT_MAX_SPEAKERS = 4 | |
| ABSOLUTE_MAX_SPEAKERS = 8 | |
| # Global variables | |
| SAMPLE_RATE = 16000 | |
| BUFFER_SIZE = 1024 | |
| CHANNELS = 1 | |
| # Speaker colors - more distinguishable colors | |
| SPEAKER_COLORS = [ | |
| "#FF6B6B", # Red | |
| "#4ECDC4", # Teal | |
| "#45B7D1", # Blue | |
| "#96CEB4", # Green | |
| "#FFEAA7", # Yellow | |
| "#DDA0DD", # Plum | |
| "#98D8C8", # Mint | |
| "#F7DC6F", # Gold | |
| ] | |
| SPEAKER_COLOR_NAMES = [ | |
| "Red", "Teal", "Blue", "Green", "Yellow", "Plum", "Mint", "Gold" | |
| ] | |
| class SpeechBrainEncoder: | |
| """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings""" | |
| def __init__(self, device="cpu"): | |
| self.device = device | |
| self.model = None | |
| self.embedding_dim = 192 | |
| self.model_loaded = False | |
| self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain") | |
| os.makedirs(self.cache_dir, exist_ok=True) | |
| def load_model(self): | |
| """Load the ECAPA-TDNN model""" | |
| try: | |
| # Import SpeechBrain | |
| from speechbrain.pretrained import EncoderClassifier | |
| # Load the pre-trained model | |
| self.model = EncoderClassifier.from_hparams( | |
| source="speechbrain/spkrec-ecapa-voxceleb", | |
| savedir=self.cache_dir, | |
| run_opts={"device": self.device} | |
| ) | |
| self.model_loaded = True | |
| return True | |
| except Exception as e: | |
| print(f"Error loading ECAPA-TDNN model: {e}") | |
| return False | |
| def embed_utterance(self, audio, sr=16000): | |
| """Extract speaker embedding from audio""" | |
| if not self.model_loaded: | |
| raise ValueError("Model not loaded. Call load_model() first.") | |
| try: | |
| if isinstance(audio, np.ndarray): | |
| # Ensure audio is float32 and properly normalized | |
| audio = audio.astype(np.float32) | |
| if np.max(np.abs(audio)) > 1.0: | |
| audio = audio / np.max(np.abs(audio)) | |
| waveform = torch.tensor(audio).unsqueeze(0) | |
| else: | |
| waveform = audio.unsqueeze(0) | |
| # Resample if necessary | |
| if sr != 16000: | |
| waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000) | |
| with torch.no_grad(): | |
| embedding = self.model.encode_batch(waveform) | |
| return embedding.squeeze().cpu().numpy() | |
| except Exception as e: | |
| logger.error(f"Error extracting embedding: {e}") | |
| return np.zeros(self.embedding_dim) | |
| class AudioProcessor: | |
| """Processes audio data to extract speaker embeddings""" | |
| def __init__(self, encoder): | |
| self.encoder = encoder | |
| self.audio_buffer = [] | |
| self.min_audio_length = int(SAMPLE_RATE * 1.0) # Minimum 1 second of audio | |
| def add_audio_chunk(self, audio_chunk): | |
| """Add audio chunk to buffer""" | |
| self.audio_buffer.extend(audio_chunk) | |
| # Keep buffer from getting too large | |
| max_buffer_size = int(SAMPLE_RATE * 10) # 10 seconds max | |
| if len(self.audio_buffer) > max_buffer_size: | |
| self.audio_buffer = self.audio_buffer[-max_buffer_size:] | |
| def extract_embedding_from_buffer(self): | |
| """Extract embedding from current audio buffer""" | |
| if len(self.audio_buffer) < self.min_audio_length: | |
| return None | |
| try: | |
| # Use the last portion of the buffer for embedding | |
| audio_segment = np.array(self.audio_buffer[-self.min_audio_length:], dtype=np.float32) | |
| # Normalize audio | |
| if np.max(np.abs(audio_segment)) > 0: | |
| audio_segment = audio_segment / np.max(np.abs(audio_segment)) | |
| else: | |
| return None | |
| embedding = self.encoder.embed_utterance(audio_segment) | |
| return embedding | |
| except Exception as e: | |
| logger.error(f"Embedding extraction error: {e}") | |
| return None | |
| class SpeakerChangeDetector: | |
| """Improved speaker change detector""" | |
| def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS): | |
| self.embedding_dim = embedding_dim | |
| self.change_threshold = change_threshold | |
| self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) | |
| self.current_speaker = 0 | |
| self.speaker_embeddings = [[] for _ in range(self.max_speakers)] | |
| self.speaker_centroids = [None] * self.max_speakers | |
| self.last_change_time = time.time() | |
| self.last_similarity = 1.0 | |
| self.active_speakers = set([0]) | |
| self.segment_counter = 0 | |
| def set_max_speakers(self, max_speakers): | |
| """Update the maximum number of speakers""" | |
| new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) | |
| if new_max < self.max_speakers: | |
| # Remove speakers beyond the new limit | |
| for speaker_id in list(self.active_speakers): | |
| if speaker_id >= new_max: | |
| self.active_speakers.discard(speaker_id) | |
| if self.current_speaker >= new_max: | |
| self.current_speaker = 0 | |
| # Resize arrays | |
| if new_max > self.max_speakers: | |
| self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)]) | |
| self.speaker_centroids.extend([None] * (new_max - self.max_speakers)) | |
| else: | |
| self.speaker_embeddings = self.speaker_embeddings[:new_max] | |
| self.speaker_centroids = self.speaker_centroids[:new_max] | |
| self.max_speakers = new_max | |
| def set_change_threshold(self, threshold): | |
| """Update the threshold for detecting speaker changes""" | |
| self.change_threshold = max(0.1, min(threshold, 0.95)) | |
| def add_embedding(self, embedding, timestamp=None): | |
| """Add a new embedding and detect speaker changes""" | |
| current_time = timestamp or time.time() | |
| self.segment_counter += 1 | |
| # Initialize first speaker | |
| if not self.speaker_embeddings[0]: | |
| self.speaker_embeddings[0].append(embedding) | |
| self.speaker_centroids[0] = embedding.copy() | |
| self.active_speakers.add(0) | |
| return 0, 1.0 | |
| # Calculate similarity with current speaker | |
| current_centroid = self.speaker_centroids[self.current_speaker] | |
| if current_centroid is not None: | |
| similarity = 1.0 - cosine(embedding, current_centroid) | |
| else: | |
| similarity = 0.5 | |
| self.last_similarity = similarity | |
| # Check for speaker change | |
| time_since_last_change = current_time - self.last_change_time | |
| speaker_changed = False | |
| if time_since_last_change >= MIN_SEGMENT_DURATION and similarity < self.change_threshold: | |
| # Find best matching speaker | |
| best_speaker = self.current_speaker | |
| best_similarity = similarity | |
| for speaker_id in self.active_speakers: | |
| if speaker_id == self.current_speaker: | |
| continue | |
| centroid = self.speaker_centroids[speaker_id] | |
| if centroid is not None: | |
| speaker_similarity = 1.0 - cosine(embedding, centroid) | |
| if speaker_similarity > best_similarity and speaker_similarity > self.change_threshold: | |
| best_similarity = speaker_similarity | |
| best_speaker = speaker_id | |
| # If no good match found and we can add a new speaker | |
| if best_speaker == self.current_speaker and len(self.active_speakers) < self.max_speakers: | |
| for new_id in range(self.max_speakers): | |
| if new_id not in self.active_speakers: | |
| best_speaker = new_id | |
| self.active_speakers.add(new_id) | |
| break | |
| if best_speaker != self.current_speaker: | |
| self.current_speaker = best_speaker | |
| self.last_change_time = current_time | |
| speaker_changed = True | |
| # Update speaker embeddings and centroids | |
| self.speaker_embeddings[self.current_speaker].append(embedding) | |
| # Keep only recent embeddings (sliding window) | |
| max_embeddings = 20 | |
| if len(self.speaker_embeddings[self.current_speaker]) > max_embeddings: | |
| self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-max_embeddings:] | |
| # Update centroid | |
| if self.speaker_embeddings[self.current_speaker]: | |
| self.speaker_centroids[self.current_speaker] = np.mean( | |
| self.speaker_embeddings[self.current_speaker], axis=0 | |
| ) | |
| return self.current_speaker, similarity | |
| def get_color_for_speaker(self, speaker_id): | |
| """Return color for speaker ID""" | |
| if 0 <= speaker_id < len(SPEAKER_COLORS): | |
| return SPEAKER_COLORS[speaker_id] | |
| return "#FFFFFF" | |
| def get_status_info(self): | |
| """Return status information""" | |
| speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)] | |
| return { | |
| "current_speaker": self.current_speaker, | |
| "speaker_counts": speaker_counts, | |
| "active_speakers": len(self.active_speakers), | |
| "max_speakers": self.max_speakers, | |
| "last_similarity": self.last_similarity, | |
| "threshold": self.change_threshold, | |
| "segment_counter": self.segment_counter | |
| } | |
| class RealtimeSpeakerDiarization: | |
| def __init__(self): | |
| self.encoder = None | |
| self.audio_processor = None | |
| self.speaker_detector = None | |
| self.recorder = None | |
| self.sentence_queue = queue.Queue() | |
| self.full_sentences = [] | |
| self.sentence_speakers = [] | |
| self.pending_sentences = [] | |
| self.current_conversation = "" | |
| self.is_running = False | |
| self.change_threshold = DEFAULT_CHANGE_THRESHOLD | |
| self.max_speakers = DEFAULT_MAX_SPEAKERS | |
| self.last_transcription = "" | |
| self.transcription_lock = threading.Lock() | |
| def initialize_models(self): | |
| """Initialize the speaker encoder model""" | |
| try: | |
| device_str = "cuda" if torch.cuda.is_available() else "cpu" | |
| logger.info(f"Using device: {device_str}") | |
| self.encoder = SpeechBrainEncoder(device=device_str) | |
| success = self.encoder.load_model() | |
| if success: | |
| self.audio_processor = AudioProcessor(self.encoder) | |
| self.speaker_detector = SpeakerChangeDetector( | |
| embedding_dim=self.encoder.embedding_dim, | |
| change_threshold=self.change_threshold, | |
| max_speakers=self.max_speakers | |
| ) | |
| logger.info("Models initialized successfully!") | |
| return True | |
| else: | |
| logger.error("Failed to load models") | |
| return False | |
| except Exception as e: | |
| logger.error(f"Model initialization error: {e}") | |
| return False | |
| def live_text_detected(self, text): | |
| """Callback for real-time transcription updates""" | |
| with self.transcription_lock: | |
| self.last_transcription = text.strip() | |
| def process_final_text(self, text): | |
| """Process final transcribed text with speaker embedding""" | |
| text = text.strip() | |
| if text: | |
| try: | |
| # Get audio data for this transcription | |
| audio_bytes = getattr(self.recorder, 'last_transcription_bytes', None) | |
| if audio_bytes: | |
| self.sentence_queue.put((text, audio_bytes)) | |
| else: | |
| # If no audio bytes, use current speaker | |
| self.sentence_queue.put((text, None)) | |
| except Exception as e: | |
| logger.error(f"Error processing final text: {e}") | |
| def process_sentence_queue(self): | |
| """Process sentences in the queue for speaker detection""" | |
| while self.is_running: | |
| try: | |
| text, audio_bytes = self.sentence_queue.get(timeout=1) | |
| current_speaker = self.speaker_detector.current_speaker | |
| if audio_bytes: | |
| # Convert audio data and extract embedding | |
| audio_int16 = np.frombuffer(audio_bytes, dtype=np.int16) | |
| audio_float = audio_int16.astype(np.float32) / 32768.0 | |
| # Extract embedding | |
| embedding = self.audio_processor.encoder.embed_utterance(audio_float) | |
| if embedding is not None: | |
| current_speaker, similarity = self.speaker_detector.add_embedding(embedding) | |
| # Store sentence with speaker | |
| with self.transcription_lock: | |
| self.full_sentences.append((text, current_speaker)) | |
| self.update_conversation_display() | |
| except queue.Empty: | |
| continue | |
| except Exception as e: | |
| logger.error(f"Error processing sentence: {e}") | |
| def update_conversation_display(self): | |
| """Update the conversation display""" | |
| try: | |
| sentences_with_style = [] | |
| for sentence_text, speaker_id in self.full_sentences: | |
| color = self.speaker_detector.get_color_for_speaker(speaker_id) | |
| speaker_name = f"Speaker {speaker_id + 1}" | |
| sentences_with_style.append( | |
| f'<span style="color:{color}; font-weight: bold;">{speaker_name}:</span> ' | |
| f'<span style="color:#333333;">{sentence_text}</span>' | |
| ) | |
| # Add current transcription if available | |
| if self.last_transcription: | |
| current_color = self.speaker_detector.get_color_for_speaker(self.speaker_detector.current_speaker) | |
| current_speaker = f"Speaker {self.speaker_detector.current_speaker + 1}" | |
| sentences_with_style.append( | |
| f'<span style="color:{current_color}; font-weight: bold; opacity: 0.7;">{current_speaker}:</span> ' | |
| f'<span style="color:#666666; font-style: italic;">{self.last_transcription}...</span>' | |
| ) | |
| if sentences_with_style: | |
| self.current_conversation = "<br><br>".join(sentences_with_style) | |
| else: | |
| self.current_conversation = "<i>Waiting for speech input...</i>" | |
| except Exception as e: | |
| logger.error(f"Error updating conversation display: {e}") | |
| self.current_conversation = f"<i>Error: {str(e)}</i>" | |
| def start_recording(self): | |
| """Start the recording and transcription process""" | |
| if self.encoder is None: | |
| return "Please initialize models first!" | |
| try: | |
| # Setup audio processor for speaker embeddings | |
| self.is_running = True | |
| # Start processing threads | |
| self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True) | |
| self.sentence_thread.start() | |
| return "Recording started successfully!" | |
| except Exception as e: | |
| logger.error(f"Error starting recording: {e}") | |
| return f"Error starting recording: {e}" | |
| def stop_recording(self): | |
| """Stop the recording process""" | |
| self.is_running = False | |
| return "Recording stopped!" | |
| def clear_conversation(self): | |
| """Clear all conversation data""" | |
| with self.transcription_lock: | |
| self.full_sentences = [] | |
| self.last_transcription = "" | |
| self.current_conversation = "Conversation cleared!" | |
| if self.speaker_detector: | |
| self.speaker_detector = SpeakerChangeDetector( | |
| embedding_dim=self.encoder.embedding_dim, | |
| change_threshold=self.change_threshold, | |
| max_speakers=self.max_speakers | |
| ) | |
| return "Conversation cleared!" | |
| def update_settings(self, threshold, max_speakers): | |
| """Update speaker detection settings""" | |
| self.change_threshold = threshold | |
| self.max_speakers = max_speakers | |
| if self.speaker_detector: | |
| self.speaker_detector.set_change_threshold(threshold) | |
| self.speaker_detector.set_max_speakers(max_speakers) | |
| return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}" | |
| def get_formatted_conversation(self): | |
| """Get the formatted conversation with structured data""" | |
| try: | |
| # Create conversation HTML format as before | |
| html_content = self.current_conversation | |
| # Create structured data | |
| structured_data = { | |
| "html_content": html_content, | |
| "sentences": [], | |
| "current_transcript": self.last_transcription, | |
| "current_speaker": self.speaker_detector.current_speaker if self.speaker_detector else 0 | |
| } | |
| # Add sentence data | |
| for sentence_text, speaker_id in self.full_sentences: | |
| color = self.speaker_detector.get_color_for_speaker(speaker_id) if self.speaker_detector else "#FFFFFF" | |
| structured_data["sentences"].append({ | |
| "text": sentence_text, | |
| "speaker_id": speaker_id, | |
| "speaker_name": f"Speaker {speaker_id + 1}", | |
| "color": color | |
| }) | |
| return html_content | |
| except Exception as e: | |
| logger.error(f"Error formatting conversation: {e}") | |
| return f"<i>Error formatting conversation: {str(e)}</i>" | |
| def get_status_info(self): | |
| """Get current status information as structured data""" | |
| if not self.speaker_detector: | |
| return {"error": "Speaker detector not initialized"} | |
| try: | |
| speaker_status = self.speaker_detector.get_status_info() | |
| # Format speaker activity | |
| speaker_activity = [] | |
| for i in range(speaker_status['max_speakers']): | |
| color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}" | |
| count = speaker_status['speaker_counts'][i] | |
| active = count > 0 | |
| speaker_activity.append({ | |
| "id": i, | |
| "name": f"Speaker {i+1}", | |
| "color": SPEAKER_COLORS[i] if i < len(SPEAKER_COLORS) else "#FFFFFF", | |
| "color_name": color_name, | |
| "segment_count": count, | |
| "active": active | |
| }) | |
| # Create structured status object | |
| status = { | |
| "current_speaker": speaker_status['current_speaker'], | |
| "current_speaker_name": f"Speaker {speaker_status['current_speaker'] + 1}", | |
| "active_speakers_count": speaker_status['active_speakers'], | |
| "max_speakers": speaker_status['max_speakers'], | |
| "last_similarity": speaker_status['last_similarity'], | |
| "change_threshold": speaker_status['threshold'], | |
| "total_sentences": len(self.full_sentences), | |
| "segments_processed": speaker_status['segment_counter'], | |
| "speaker_activity": speaker_activity, | |
| "timestamp": time.time() | |
| } | |
| # Also create a formatted text version for UI display | |
| status_lines = [ | |
| f"**Current Speaker:** {status['current_speaker'] + 1}", | |
| f"**Active Speakers:** {status['active_speakers_count']} of {status['max_speakers']}", | |
| f"**Last Similarity:** {status['last_similarity']:.3f}", | |
| f"**Change Threshold:** {status['change_threshold']:.2f}", | |
| f"**Total Sentences:** {status['total_sentences']}", | |
| f"**Segments Processed:** {status['segments_processed']}", | |
| "", | |
| "**Speaker Activity:**" | |
| ] | |
| for speaker in status["speaker_activity"]: | |
| active = "🟢" if speaker["active"] else "⚫" | |
| status_lines.append(f"{active} Speaker {speaker['id']+1} ({speaker['color_name']}): {speaker['segment_count']} segments") | |
| status["formatted_text"] = "\n".join(status_lines) | |
| return status | |
| except Exception as e: | |
| error_msg = f"Error getting status: {e}" | |
| logger.error(error_msg) | |
| return {"error": error_msg, "formatted_text": error_msg} | |
| def process_audio_chunk(self, audio_data, sample_rate=16000): | |
| """Process audio chunk from WebSocket input""" | |
| if not self.is_running or self.audio_processor is None: | |
| return {"status": "not_running"} | |
| try: | |
| # Convert bytes to numpy array if needed | |
| if isinstance(audio_data, bytes): | |
| audio_data = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0 | |
| # Ensure audio is float32 | |
| if isinstance(audio_data, np.ndarray): | |
| if audio_data.dtype != np.float32: | |
| audio_data = audio_data.astype(np.float32) | |
| else: | |
| audio_data = np.array(audio_data, dtype=np.float32) | |
| # Ensure mono | |
| if len(audio_data.shape) > 1: | |
| audio_data = np.mean(audio_data, axis=1) if audio_data.shape[1] > 1 else audio_data.flatten() | |
| # Normalize if needed | |
| if np.max(np.abs(audio_data)) > 1.0: | |
| audio_data = audio_data / np.max(np.abs(audio_data)) | |
| # Add to audio processor buffer for speaker detection | |
| self.audio_processor.add_audio_chunk(audio_data) | |
| # Periodically extract embeddings for speaker detection | |
| embedding = None | |
| speaker_id = self.speaker_detector.current_speaker | |
| similarity = 1.0 | |
| if len(self.audio_processor.audio_buffer) >= SAMPLE_RATE and (len(self.audio_processor.audio_buffer) - SAMPLE_RATE) % (SAMPLE_RATE // 2)==0: | |
| embedding = self.audio_processor.extract_embedding_from_buffer() | |
| if embedding is not None: | |
| speaker_id, similarity = self.speaker_detector.add_embedding(embedding) | |
| # Add a simulated sentence for demo purposes | |
| if similarity < 0.5: | |
| with self.transcription_lock: | |
| self.full_sentences.append((f"[Audio segment {self.speaker_detector.segment_counter}]", speaker_id)) | |
| self.update_conversation_display() | |
| # Return processing result | |
| return { | |
| "status": "processed", | |
| "buffer_size": len(self.audio_processor.audio_buffer), | |
| "speaker_id": speaker_id, | |
| "similarity": similarity if embedding is not None else None, | |
| "latest_sentence": f"[Audio segment {self.speaker_detector.segment_counter}]" if similarity < 0.5 else None, | |
| "conversation_html": self.current_conversation | |
| } | |
| except Exception as e: | |
| logger.error(f"Error processing audio chunk: {e}") | |
| return {"status": "error", "message": str(e)} | |
| def resample_audio(self, audio_bytes, from_rate, to_rate): | |
| """Resample audio to target sample rate""" | |
| try: | |
| audio_np = np.frombuffer(audio_bytes, dtype=np.int16) | |
| num_samples = len(audio_np) | |
| num_target_samples = int(num_samples * to_rate / from_rate) | |
| resampled = resample(audio_np, num_target_samples) | |
| return resampled.astype(np.int16).tobytes() | |
| except Exception as e: | |
| logger.error(f"Error resampling audio: {e}") | |
| return audio_bytes |