# coding: utf-8 """ cropping function and the related preprocess functions for cropping """ import pdb import numpy as np import os.path as osp from math import sin, cos, acos, degrees import cv2 import torch import torch.nn.functional as F import torchgeometry as tgm DTYPE = np.float32 CV2_INTERP = cv2.INTER_LINEAR def make_abs_path(fn): return osp.join(osp.dirname(osp.realpath(__file__)), fn) def _transform_img(img, M, dsize, flags=CV2_INTERP, borderMode=None): """ conduct similarity or affine transformation to the image, do not do border operation! img: M: 2x3 matrix or 3x3 matrix dsize: target shape (width, height) """ if isinstance(dsize, tuple) or isinstance(dsize, list): _dsize = tuple(dsize) else: _dsize = (dsize, dsize) if borderMode is not None: return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags, borderMode=borderMode, borderValue=(0, 0, 0)) else: return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags) def _transform_img_torch(img, M, dsize, rotation_center=None, flags=None, borderMode=None): """ Conduct similarity or affine transformation to the image using PyTorch CUDA. Args: img (torch.Tensor): Input image tensor (C x H x W) M (torch.Tensor): 2x3 or 3x3 transformation matrix dsize (tuple or int): Target shape (width, height) rotation_center (tuple): Center of rotation (x, y), if None, use image center flags: Not used in this implementation (for compatibility) borderMode: 'zeros' or 'border' for handling out-of-bounds pixels Returns: torch.Tensor: Transformed image """ if isinstance(dsize, tuple) or isinstance(dsize, list): _dsize = tuple(dsize) else: _dsize = (dsize, dsize) # Prepare the transformation matrix M = M[:2, :] # Ensure it's a 2x3 matrix img_transformed = tgm.warp_affine(img.unsqueeze(0), M[None], (_dsize[1], _dsize[0])) img_transformed = img_transformed.squeeze(0) return img_transformed def _transform_pts(pts, M): """ conduct similarity or affine transformation to the pts pts: Nx2 ndarray M: 2x3 matrix or 3x3 matrix return: Nx2 """ return pts @ M[:2, :2].T + M[:2, 2] def parse_pt2_from_pt101(pt101, use_lip=True): """ parsing the 2 points according to the 101 points, which cancels the roll """ # the former version use the eye center, but it is not robust, now use interpolation pt_left_eye = np.mean(pt101[[39, 42, 45, 48]], axis=0) # left eye center pt_right_eye = np.mean(pt101[[51, 54, 57, 60]], axis=0) # right eye center if use_lip: # use lip pt_center_eye = (pt_left_eye + pt_right_eye) / 2 pt_center_lip = (pt101[75] + pt101[81]) / 2 pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0) else: pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0) return pt2 def parse_pt2_from_pt106(pt106, use_lip=True): """ parsing the 2 points according to the 106 points, which cancels the roll """ pt_left_eye = np.mean(pt106[[33, 35, 40, 39]], axis=0) # left eye center pt_right_eye = np.mean(pt106[[87, 89, 94, 93]], axis=0) # right eye center if use_lip: # use lip pt_center_eye = (pt_left_eye + pt_right_eye) / 2 pt_center_lip = (pt106[52] + pt106[61]) / 2 pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0) else: pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0) return pt2 def parse_pt2_from_pt203(pt203, use_lip=True): """ parsing the 2 points according to the 203 points, which cancels the roll """ pt_left_eye = np.mean(pt203[[0, 6, 12, 18]], axis=0) # left eye center pt_right_eye = np.mean(pt203[[24, 30, 36, 42]], axis=0) # right eye center if use_lip: # use lip pt_center_eye = (pt_left_eye + pt_right_eye) / 2 pt_center_lip = (pt203[48] + pt203[66]) / 2 pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0) else: pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0) return pt2 def parse_pt2_from_pt68(pt68, use_lip=True): """ parsing the 2 points according to the 68 points, which cancels the roll """ lm_idx = np.array([31, 37, 40, 43, 46, 49, 55], dtype=np.int32) - 1 if use_lip: pt5 = np.stack([ np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye pt68[lm_idx[0], :], # nose pt68[lm_idx[5], :], # lip pt68[lm_idx[6], :] # lip ], axis=0) pt2 = np.stack([ (pt5[0] + pt5[1]) / 2, (pt5[3] + pt5[4]) / 2 ], axis=0) else: pt2 = np.stack([ np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye ], axis=0) return pt2 def parse_pt2_from_pt5(pt5, use_lip=True): """ parsing the 2 points according to the 5 points, which cancels the roll """ if use_lip: pt2 = np.stack([ (pt5[0] + pt5[1]) / 2, (pt5[3] + pt5[4]) / 2 ], axis=0) else: pt2 = np.stack([ pt5[0], pt5[1] ], axis=0) return pt2 def parse_pt2_from_pt9(pt9, use_lip=True): ''' parsing the 2 points according to the 9 points, which cancels the roll ['right eye right', 'right eye left', 'left eye right', 'left eye left', 'nose tip', 'lip right', 'lip left', 'upper lip', 'lower lip'] ''' if use_lip: pt9 = np.stack([ (pt9[2] + pt9[3]) / 2, # left eye (pt9[0] + pt9[1]) / 2, # right eye pt9[4], (pt9[5] + pt9[6]) / 2 # lip ], axis=0) pt2 = np.stack([ (pt9[0] + pt9[1]) / 2, # eye pt9[3] # lip ], axis=0) else: pt2 = np.stack([ (pt9[2] + pt9[3]) / 2, (pt9[0] + pt9[1]) / 2, ], axis=0) return pt2 def parse_pt2_from_pt478(pt478, use_lip=True): """ parsing the 2 points according to the 101 points, which cancels the roll """ # the former version use the eye center, but it is not robust, now use interpolation pt_left_eye = pt478[468] # left eye center pt_right_eye = pt478[473] # right eye center if use_lip: # use lip pt_center_eye = (pt_left_eye + pt_right_eye) / 2 pt_center_lip = pt478[14] pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0) else: pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0) return pt2 def parse_pt2_from_pt_x(pts, use_lip=True): if pts.shape[0] == 101: pt2 = parse_pt2_from_pt101(pts, use_lip=use_lip) elif pts.shape[0] == 106: pt2 = parse_pt2_from_pt106(pts, use_lip=use_lip) elif pts.shape[0] == 68: pt2 = parse_pt2_from_pt68(pts, use_lip=use_lip) elif pts.shape[0] == 5: pt2 = parse_pt2_from_pt5(pts, use_lip=use_lip) elif pts.shape[0] == 478: pt2 = parse_pt2_from_pt478(pts, use_lip=use_lip) elif pts.shape[0] == 203: pt2 = parse_pt2_from_pt203(pts, use_lip=use_lip) elif pts.shape[0] > 101: # take the first 101 points pt2 = parse_pt2_from_pt101(pts[:101], use_lip=use_lip) elif pts.shape[0] == 9: pt2 = parse_pt2_from_pt9(pts, use_lip=use_lip) else: raise Exception(f'Unknow shape: {pts.shape}') if not use_lip: # NOTE: to compile with the latter code, need to rotate the pt2 90 degrees clockwise manually v = pt2[1] - pt2[0] pt2[1, 0] = pt2[0, 0] - v[1] pt2[1, 1] = pt2[0, 1] + v[0] return pt2 def parse_rect_from_landmark( pts, scale=1.5, need_square=True, vx_ratio=0, vy_ratio=0, use_deg_flag=False, **kwargs ): """parsing center, size, angle from 101/68/5/x landmarks vx_ratio: the offset ratio along the pupil axis x-axis, multiplied by size vy_ratio: the offset ratio along the pupil axis y-axis, multiplied by size, which is used to contain more forehead area judge with pts.shape """ pt2 = parse_pt2_from_pt_x(pts, use_lip=kwargs.get('use_lip', True)) uy = pt2[1] - pt2[0] l = np.linalg.norm(uy) if l <= 1e-3: uy = np.array([0, 1], dtype=DTYPE) else: uy /= l ux = np.array((uy[1], -uy[0]), dtype=DTYPE) # the rotation degree of the x-axis, the clockwise is positive, the counterclockwise is negative (image coordinate system) # print(uy) # print(ux) angle = acos(ux[0]) if ux[1] < 0: angle = -angle # rotation matrix M = np.array([ux, uy]) # calculate the size which contains the angle degree of the bbox, and the center center0 = np.mean(pts, axis=0) rpts = (pts - center0) @ M.T # (M @ P.T).T = P @ M.T lt_pt = np.min(rpts, axis=0) rb_pt = np.max(rpts, axis=0) center1 = (lt_pt + rb_pt) / 2 size = rb_pt - lt_pt if need_square: m = max(size[0], size[1]) size[0] = m size[1] = m size *= scale # scale size center = center0 + ux * center1[0] + uy * center1[1] # counterclockwise rotation, equivalent to M.T @ center1.T center = center + ux * (vx_ratio * size) + uy * \ (vy_ratio * size) # considering the offset in vx and vy direction if use_deg_flag: angle = degrees(angle) return center, size, angle def parse_bbox_from_landmark(pts, **kwargs): center, size, angle = parse_rect_from_landmark(pts, **kwargs) cx, cy = center w, h = size # calculate the vertex positions before rotation bbox = np.array([ [cx - w / 2, cy - h / 2], # left, top [cx + w / 2, cy - h / 2], [cx + w / 2, cy + h / 2], # right, bottom [cx - w / 2, cy + h / 2] ], dtype=DTYPE) # construct rotation matrix bbox_rot = bbox.copy() R = np.array([ [np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)] ], dtype=DTYPE) # calculate the relative position of each vertex from the rotation center, then rotate these positions, and finally add the coordinates of the rotation center bbox_rot = (bbox_rot - center) @ R.T + center return { 'center': center, # 2x1 'size': size, # scalar 'angle': angle, # rad, counterclockwise 'bbox': bbox, # 4x2 'bbox_rot': bbox_rot, # 4x2 } def crop_image_by_bbox(img, bbox, lmk=None, dsize=512, angle=None, flag_rot=False, **kwargs): left, top, right, bot = bbox if int(right - left) != int(bot - top): print(f'right-left {right - left} != bot-top {bot - top}') size = right - left src_center = np.array([(left + right) / 2, (top + bot) / 2], dtype=DTYPE) tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE) s = dsize / size # scale if flag_rot and angle is not None: costheta, sintheta = cos(angle), sin(angle) cx, cy = src_center[0], src_center[1] # ori center tcx, tcy = tgt_center[0], tgt_center[1] # target center # need to infer M_o2c = np.array( [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)], [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]], dtype=DTYPE ) else: M_o2c = np.array( [[s, 0, tgt_center[0] - s * src_center[0]], [0, s, tgt_center[1] - s * src_center[1]]], dtype=DTYPE ) # if flag_rot and angle is None: # print('angle is None, but flag_rotate is True', style="bold yellow") img_crop = _transform_img(img, M_o2c, dsize=dsize, borderMode=kwargs.get('borderMode', None)) lmk_crop = _transform_pts(lmk, M_o2c) if lmk is not None else None M_o2c = np.vstack([M_o2c, np.array([0, 0, 1], dtype=DTYPE)]) M_c2o = np.linalg.inv(M_o2c) # cv2.imwrite('crop.jpg', img_crop) return { 'img_crop': img_crop, 'lmk_crop': lmk_crop, 'M_o2c': M_o2c, 'M_c2o': M_c2o, } def _estimate_similar_transform_from_pts( pts, dsize, scale=1.5, vx_ratio=0, vy_ratio=-0.1, flag_do_rot=True, **kwargs ): """ calculate the affine matrix of the cropped image from sparse points, the original image to the cropped image, the inverse is the cropped image to the original image pts: landmark, 101 or 68 points or other points, Nx2 scale: the larger scale factor, the smaller face ratio vx_ratio: x shift vy_ratio: y shift, the smaller the y shift, the lower the face region rot_flag: if it is true, conduct correction """ center, size, angle = parse_rect_from_landmark( pts, scale=scale, vx_ratio=vx_ratio, vy_ratio=vy_ratio, use_lip=kwargs.get('use_lip', True) ) s = dsize / size[0] # scale tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE) # center of dsize if flag_do_rot: costheta, sintheta = cos(angle), sin(angle) cx, cy = center[0], center[1] # ori center tcx, tcy = tgt_center[0], tgt_center[1] # target center # need to infer M_INV = np.array( [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)], [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]], dtype=DTYPE ) else: M_INV = np.array( [[s, 0, tgt_center[0] - s * center[0]], [0, s, tgt_center[1] - s * center[1]]], dtype=DTYPE ) M_INV_H = np.vstack([M_INV, np.array([0, 0, 1])]) M = np.linalg.inv(M_INV_H) # M_INV is from the original image to the cropped image, M is from the cropped image to the original image return M_INV, M[:2, ...] def crop_image(img, pts: np.ndarray, **kwargs): dsize = kwargs.get('dsize', 224) scale = kwargs.get('scale', 1.5) # 1.5 | 1.6 vy_ratio = kwargs.get('vy_ratio', -0.1) # -0.0625 | -0.1 M_INV, _ = _estimate_similar_transform_from_pts( pts, dsize=dsize, scale=scale, vy_ratio=vy_ratio, flag_do_rot=kwargs.get('flag_do_rot', True), ) img_crop = _transform_img(img, M_INV, dsize) # origin to crop pt_crop = _transform_pts(pts, M_INV) M_o2c = np.vstack([M_INV, np.array([0, 0, 1], dtype=DTYPE)]) M_c2o = np.linalg.inv(M_o2c) ret_dct = { 'M_o2c': M_o2c, # from the original image to the cropped image 3x3 'M_c2o': M_c2o, # from the cropped image to the original image 3x3 'img_crop': img_crop, # the cropped image 'pt_crop': pt_crop, # the landmarks of the cropped image } return ret_dct def average_bbox_lst(bbox_lst): if len(bbox_lst) == 0: return None bbox_arr = np.array(bbox_lst) return np.mean(bbox_arr, axis=0).tolist() def prepare_paste_back(mask_crop, crop_M_c2o, dsize): """prepare mask for later image paste back """ mask_ori = _transform_img(mask_crop, crop_M_c2o, dsize) mask_ori = mask_ori.astype(np.float32) / 255. return mask_ori def paste_back(img_crop, M_c2o, img_ori, mask_ori): """paste back the image """ dsize = (img_ori.shape[1], img_ori.shape[0]) result = _transform_img(img_crop, M_c2o, dsize=dsize) result = np.clip(mask_ori * result + (1 - mask_ori) * img_ori, 0, 255).astype(np.uint8) return result def paste_back_pytorch(img_crop, M_c2o, img_ori, mask_ori): """paste back the image """ dsize = (img_ori.shape[1], img_ori.shape[0]) img_crop = img_crop.permute(2, 0, 1).float() img_back = _transform_img_torch(img_crop, M_c2o, dsize=dsize) img_back = img_back.permute(1, 2, 0) img_back = torch.clip(mask_ori * img_back + (1 - mask_ori) * img_ori, 0, 255) return img_back