File size: 8,708 Bytes
8dc9718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- coding: utf-8 -*-
# @Time    : 2024/12/15
# @Author  : wenshao
# @Email   : [email protected]
# @Project : FasterLivePortrait
# @FileName: joyvasa_audio_to_motion_pipeline.py

import math
import pdb

import torch
import torchaudio
import numpy as np
import torch.nn.functional as F
import pickle
from tqdm import tqdm
import pathlib
import os

from ..models.JoyVASA.dit_talking_head import DitTalkingHead
from ..models.JoyVASA.helper import NullableArgs
from ..utils import utils


class JoyVASAAudio2MotionPipeline:
    """
    JoyVASA 声音生成LivePortrait Motion
    """

    def __init__(self, **kwargs):
        self.device, self.dtype = utils.get_opt_device_dtype()
        # Check if the operating system is Windows
        if os.name == 'nt':
            temp = pathlib.PosixPath
            pathlib.PosixPath = pathlib.WindowsPath
        motion_model_path = kwargs.get("motion_model_path", "")
        audio_model_path = kwargs.get("audio_model_path", "")
        motion_template_path = kwargs.get("motion_template_path", "")
        model_data = torch.load(motion_model_path, map_location="cpu")
        model_args = NullableArgs(model_data['args'])
        model = DitTalkingHead(motion_feat_dim=model_args.motion_feat_dim,
                               n_motions=model_args.n_motions,
                               n_prev_motions=model_args.n_prev_motions,
                               feature_dim=model_args.feature_dim,
                               audio_model=model_args.audio_model,
                               n_diff_steps=model_args.n_diff_steps,
                               audio_encoder_path=audio_model_path)
        model_data['model'].pop('denoising_net.TE.pe')
        model.load_state_dict(model_data['model'], strict=False)
        model.to(self.device, dtype=self.dtype)
        model.eval()

        # Restore the original PosixPath if it was changed
        if os.name == 'nt':
            pathlib.PosixPath = temp

        self.motion_generator = model
        self.n_motions = model_args.n_motions
        self.n_prev_motions = model_args.n_prev_motions
        self.fps = model_args.fps
        self.audio_unit = 16000. / self.fps  # num of samples per frame
        self.n_audio_samples = round(self.audio_unit * self.n_motions)
        self.pad_mode = model_args.pad_mode
        self.use_indicator = model_args.use_indicator
        self.cfg_mode = kwargs.get("cfg_mode", "incremental")
        self.cfg_cond = kwargs.get("cfg_cond", None)
        self.cfg_scale = kwargs.get("cfg_scale", 2.8)
        with open(motion_template_path, 'rb') as fin:
            self.templete_dict = pickle.load(fin)

    @torch.inference_mode()
    def gen_motion_sequence(self, audio_path, **kwargs):
        # preprocess audio
        audio, sample_rate = torchaudio.load(audio_path)
        if sample_rate != 16000:
            audio = torchaudio.functional.resample(
                audio,
                orig_freq=sample_rate,
                new_freq=16000,
            )
        audio = audio.mean(0).to(self.device, dtype=self.dtype)
        # audio = F.pad(audio, (1280, 640), "constant", 0)
        # audio_mean, audio_std = torch.mean(audio), torch.std(audio)
        # audio = (audio - audio_mean) / (audio_std + 1e-5)

        # crop audio into n_subdivision according to n_motions
        clip_len = int(len(audio) / 16000 * self.fps)
        stride = self.n_motions
        if clip_len <= self.n_motions:
            n_subdivision = 1
        else:
            n_subdivision = math.ceil(clip_len / stride)

        # padding
        n_padding_audio_samples = self.n_audio_samples * n_subdivision - len(audio)
        n_padding_frames = math.ceil(n_padding_audio_samples / self.audio_unit)
        if n_padding_audio_samples > 0:
            if self.pad_mode == 'zero':
                padding_value = 0
            elif self.pad_mode == 'replicate':
                padding_value = audio[-1]
            else:
                raise ValueError(f'Unknown pad mode: {self.pad_mode}')
            audio = F.pad(audio, (0, n_padding_audio_samples), value=padding_value)

        # generate motions
        coef_list = []
        for i in range(0, n_subdivision):
            start_idx = i * stride
            end_idx = start_idx + self.n_motions
            indicator = torch.ones((1, self.n_motions)).to(self.device) if self.use_indicator else None
            if indicator is not None and i == n_subdivision - 1 and n_padding_frames > 0:
                indicator[:, -n_padding_frames:] = 0
            audio_in = audio[round(start_idx * self.audio_unit):round(end_idx * self.audio_unit)].unsqueeze(0)

            if i == 0:
                motion_feat, noise, prev_audio_feat = self.motion_generator.sample(audio_in,
                                                                                   indicator=indicator,
                                                                                   cfg_mode=self.cfg_mode,
                                                                                   cfg_cond=self.cfg_cond,
                                                                                   cfg_scale=self.cfg_scale,
                                                                                   dynamic_threshold=0)
            else:
                motion_feat, noise, prev_audio_feat = self.motion_generator.sample(audio_in,
                                                                                   prev_motion_feat.to(self.dtype),
                                                                                   prev_audio_feat.to(self.dtype),
                                                                                   noise.to(self.dtype),
                                                                                   indicator=indicator,
                                                                                   cfg_mode=self.cfg_mode,
                                                                                   cfg_cond=self.cfg_cond,
                                                                                   cfg_scale=self.cfg_scale,
                                                                                   dynamic_threshold=0)
            prev_motion_feat = motion_feat[:, -self.n_prev_motions:].clone()
            prev_audio_feat = prev_audio_feat[:, -self.n_prev_motions:]

            motion_coef = motion_feat
            if i == n_subdivision - 1 and n_padding_frames > 0:
                motion_coef = motion_coef[:, :-n_padding_frames]  # delete padded frames
            coef_list.append(motion_coef)
            motion_coef = torch.cat(coef_list, dim=1)
            # motion_coef = self.reformat_motion(args, motion_coef)

        motion_coef = motion_coef.squeeze().cpu().numpy().astype(np.float32)
        motion_list = []
        for idx in tqdm(range(motion_coef.shape[0]), total=motion_coef.shape[0]):
            exp = motion_coef[idx][:63] * self.templete_dict["std_exp"] + self.templete_dict["mean_exp"]
            scale = motion_coef[idx][63:64] * (
                    self.templete_dict["max_scale"] - self.templete_dict["min_scale"]) + self.templete_dict[
                        "min_scale"]
            t = motion_coef[idx][64:67] * (self.templete_dict["max_t"] - self.templete_dict["min_t"]) + \
                self.templete_dict["min_t"]
            pitch = motion_coef[idx][67:68] * (
                    self.templete_dict["max_pitch"] - self.templete_dict["min_pitch"]) + self.templete_dict[
                        "min_pitch"]
            yaw = motion_coef[idx][68:69] * (self.templete_dict["max_yaw"] - self.templete_dict["min_yaw"]) + \
                  self.templete_dict["min_yaw"]
            roll = motion_coef[idx][69:70] * (self.templete_dict["max_roll"] - self.templete_dict["min_roll"]) + \
                   self.templete_dict["min_roll"]

            R = utils.get_rotation_matrix(pitch, yaw, roll)
            R = R.reshape(1, 3, 3).astype(np.float32)

            exp = exp.reshape(1, 21, 3).astype(np.float32)
            scale = scale.reshape(1, 1).astype(np.float32)
            t = t.reshape(1, 3).astype(np.float32)
            pitch = pitch.reshape(1, 1).astype(np.float32)
            yaw = yaw.reshape(1, 1).astype(np.float32)
            roll = roll.reshape(1, 1).astype(np.float32)

            motion_list.append({"exp": exp, "scale": scale, "R": R, "t": t, "pitch": pitch, "yaw": yaw, "roll": roll})
        tgt_motion = {'n_frames': motion_coef.shape[0], 'output_fps': self.fps, 'motion': motion_list, 'c_eyes_lst': [],
                      'c_lip_lst': []}
        return tgt_motion