Spaces:
Configuration error
Configuration error
File size: 25,298 Bytes
8dc9718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
import pdb
import torch
import torch.nn as nn
import torch.nn.functional as F
import platform
from .common import PositionalEncoding, enc_dec_mask, pad_audio
from tqdm import tqdm
class DiffusionSchedule(nn.Module):
def __init__(self, num_steps, mode='linear', beta_1=1e-4, beta_T=0.02, s=0.008):
super().__init__()
if mode == 'linear':
betas = torch.linspace(beta_1, beta_T, num_steps)
elif mode == 'quadratic':
betas = torch.linspace(beta_1 ** 0.5, beta_T ** 0.5, num_steps) ** 2
elif mode == 'sigmoid':
betas = torch.sigmoid(torch.linspace(-5, 5, num_steps)) * (beta_T - beta_1) + beta_1
elif mode == 'cosine':
steps = num_steps + 1
x = torch.linspace(0, num_steps, steps)
alpha_bars = torch.cos(((x / num_steps) + s) / (1 + s) * torch.pi * 0.5) ** 2
alpha_bars = alpha_bars / alpha_bars[0]
betas = 1 - (alpha_bars[1:] / alpha_bars[:-1])
betas = torch.clip(betas, 0.0001, 0.999)
else:
raise ValueError(f'Unknown diffusion schedule {mode}!')
betas = torch.cat([torch.zeros(1), betas], dim=0) # Padding beta_0 = 0
alphas = 1 - betas
log_alphas = torch.log(alphas)
for i in range(1, log_alphas.shape[0]): # 1 to T
log_alphas[i] += log_alphas[i - 1]
alpha_bars = log_alphas.exp()
sigmas_flex = torch.sqrt(betas)
sigmas_inflex = torch.zeros_like(sigmas_flex)
for i in range(1, sigmas_flex.shape[0]):
sigmas_inflex[i] = ((1 - alpha_bars[i - 1]) / (1 - alpha_bars[i])) * betas[i]
sigmas_inflex = torch.sqrt(sigmas_inflex)
self.num_steps = num_steps
self.register_buffer('betas', betas)
self.register_buffer('alphas', alphas)
self.register_buffer('alpha_bars', alpha_bars)
self.register_buffer('sigmas_flex', sigmas_flex)
self.register_buffer('sigmas_inflex', sigmas_inflex)
def uniform_sample_t(self, batch_size):
ts = torch.randint(1, self.num_steps + 1, (batch_size,))
return ts.tolist()
def get_sigmas(self, t, flexibility=0):
assert 0 <= flexibility <= 1
sigmas = self.sigmas_flex[t] * flexibility + self.sigmas_inflex[t] * (1 - flexibility)
return sigmas
class DitTalkingHead(nn.Module):
def __init__(self, device='cuda', target="sample", architecture="decoder",
motion_feat_dim=76, fps=25, n_motions=100, n_prev_motions=10,
audio_model="hubert", feature_dim=512, n_diff_steps=500, diff_schedule="cosine",
cfg_mode="incremental", guiding_conditions="audio,", audio_encoder_path=''):
super().__init__()
# Model parameters
self.target = target # 预测原始图像还是预测噪声
self.architecture = architecture
self.motion_feat_dim = motion_feat_dim # motion 特征维度
self.fps = fps
self.n_motions = n_motions # 当前motion100个, window_length, T_w
self.n_prev_motions = n_prev_motions # 前续motion 10个, T_p
self.feature_dim = feature_dim
# Audio encoder
self.audio_model = audio_model
if self.audio_model == 'wav2vec2':
print("using wav2vec2 audio encoder ...")
from .wav2vec2 import Wav2Vec2Model
self.audio_encoder = Wav2Vec2Model.from_pretrained(audio_encoder_path)
# wav2vec 2.0 weights initialization
self.audio_encoder.feature_extractor._freeze_parameters()
frozen_layers = [0, 1]
for name, param in self.audio_encoder.named_parameters():
if name.startswith("feature_projection"):
param.requires_grad = False
if name.startswith("encoder.layers"):
layer = int(name.split(".")[2])
if layer in frozen_layers:
param.requires_grad = False
elif self.audio_model == "wav2vec2_ori":
from .wav2vec2 import Wav2Vec2Model
self.audio_encoder = Wav2Vec2Model.from_pretrained(audio_encoder_path)
# wav2vec 2.0 weights initialization
self.audio_encoder.feature_extractor._freeze_parameters()
elif self.audio_model == 'hubert': # 根据经验,hubert特征提取器效果更好
from .hubert import HubertModel
# from hubert import HubertModel
self.audio_encoder = HubertModel.from_pretrained(audio_encoder_path)
self.audio_encoder.feature_extractor._freeze_parameters()
# print("hubert-en: ", self.audio_encoder)
frozen_layers = [0, 1]
for name, param in self.audio_encoder.named_parameters():
if name.startswith("feature_projection"):
param.requires_grad = False
if name.startswith("encoder.layers"):
layer = int(name.split(".")[2])
if layer in frozen_layers:
param.requires_grad = False
elif self.audio_model == 'hubert_zh': # 根据经验,hubert特征提取器效果更好
print("using hubert chinese")
from .hubert import HubertModel
# from hubert import HubertModel
self.audio_encoder = HubertModel.from_pretrained(audio_encoder_path)
self.audio_encoder.feature_extractor._freeze_parameters()
frozen_layers = [0, 1]
for name, param in self.audio_encoder.named_parameters():
if name.startswith("feature_projection"):
param.requires_grad = False
if name.startswith("encoder.layers"):
layer = int(name.split(".")[2])
if layer in frozen_layers:
param.requires_grad = False
elif self.audio_model == 'hubert_zh_ori': # 根据经验,hubert特征提取器效果更好
print("using hubert chinese ori")
from .hubert import HubertModel
self.audio_encoder = HubertModel.from_pretrained(audio_encoder_path)
self.audio_encoder.feature_extractor._freeze_parameters()
else:
raise ValueError(f'Unknown audio model {self.audio_model}!')
if architecture == 'decoder':
self.audio_feature_map = nn.Linear(768, feature_dim)
self.start_audio_feat = nn.Parameter(torch.randn(1, self.n_prev_motions, feature_dim))
else:
raise ValueError(f'Unknown architecture {architecture}!')
self.start_motion_feat = nn.Parameter(torch.randn(1, self.n_prev_motions, self.motion_feat_dim)) # 1, 10, 76
# Diffusion model
self.denoising_net = DenoisingNetwork(device=device, n_motions=self.n_motions,
n_prev_motions=self.n_prev_motions,
motion_feat_dim=self.motion_feat_dim, feature_dim=feature_dim)
# diffusion schedule
self.diffusion_sched = DiffusionSchedule(n_diff_steps, diff_schedule)
# Classifier-free settings
self.cfg_mode = cfg_mode
guiding_conditions = guiding_conditions.split(',') if guiding_conditions else []
self.guiding_conditions = [cond for cond in guiding_conditions if cond in ['audio']]
if 'audio' in self.guiding_conditions:
audio_feat_dim = feature_dim
self.null_audio_feat = nn.Parameter(torch.randn(1, 1, audio_feat_dim)) # 1, 1, 512
self.to(device)
@property
def device(self):
return next(self.parameters()).device
def forward(self, motion_feat, audio_or_feat, prev_motion_feat=None, prev_audio_feat=None, time_step=None,
indicator=None):
"""
Args:
motion_feat: (N, L, d_coef) motion coefficients or features
audio_or_feat: (N, L_audio) raw audio or audio feature
prev_motion_feat: (N, n_prev_motions, d_motion) previous motion coefficients or feature
prev_audio_feat: (N, n_prev_motions, d_audio) previous audio features
time_step: (N,)
indicator: (N, L) 0/1 indicator of real (unpadded) motion coefficients
Returns:
motion_feat_noise: (N, L, d_motion)
"""
batch_size = motion_feat.shape[0]
# 加载语音特征
if audio_or_feat.ndim == 2: # 原始语音
# Extract audio features
assert audio_or_feat.shape[1] == 16000 * self.n_motions / self.fps, \
f'Incorrect audio length {audio_or_feat.shape[1]}'
audio_feat_saved = self.extract_audio_feature(audio_or_feat) # (N, L, feature_dim)
elif audio_or_feat.ndim == 3: # 语音特征
assert audio_or_feat.shape[1] == self.n_motions, f'Incorrect audio feature length {audio_or_feat.shape[1]}'
audio_feat_saved = audio_or_feat
else:
raise ValueError(f'Incorrect audio input shape {audio_or_feat.shape}')
audio_feat = audio_feat_saved.clone()
# 前续motion特征
if prev_motion_feat is None:
prev_motion_feat = self.start_motion_feat.expand(batch_size, -1, -1) # (N, n_prev_motions, d_motion)
# 前续语音特征
if prev_audio_feat is None:
# (N, n_prev_motions, feature_dim)
prev_audio_feat = self.start_audio_feat.expand(batch_size, -1, -1)
# Classifier-free guidance
if len(self.guiding_conditions) > 0:
assert len(self.guiding_conditions) <= 2, 'Only support 1 or 2 CFG conditions!'
if len(self.guiding_conditions) == 1 or self.cfg_mode == 'independent':
null_cond_prob = 0.5 if len(self.guiding_conditions) >= 2 else 0.1
if 'audio' in self.guiding_conditions:
mask_audio = torch.rand(batch_size, device=self.device) < null_cond_prob
audio_feat = torch.where(mask_audio.view(-1, 1, 1),
self.null_audio_feat.expand(batch_size, self.n_motions, -1),
audio_feat)
else:
# len(self.guiding_conditions) > 1 and self.cfg_mode == 'incremental'
# full (0.45), w/o style (0.45), w/o style or audio (0.1)
mask_flag = torch.rand(batch_size, device=self.device)
if 'audio' in self.guiding_conditions:
mask_audio = mask_flag > 0.9
audio_feat = torch.where(mask_audio.view(-1, 1, 1),
self.null_audio_feat.expand(batch_size, self.n_motions, -1),
audio_feat)
if time_step is None:
# Sample time step
time_step = self.diffusion_sched.uniform_sample_t(batch_size) # (N,)
# The forward diffusion process
alpha_bar = self.diffusion_sched.alpha_bars[time_step] # (N,)
c0 = torch.sqrt(alpha_bar).view(-1, 1, 1) # (N, 1, 1)
c1 = torch.sqrt(1 - alpha_bar).view(-1, 1, 1) # (N, 1, 1)
eps = torch.randn_like(motion_feat) # (N, L, d_motion)
motion_feat_noisy = c0 * motion_feat + c1 * eps
# The reverse diffusion process
motion_feat_target = self.denoising_net(motion_feat_noisy, audio_feat,
prev_motion_feat, prev_audio_feat, time_step, indicator)
return eps, motion_feat_target, motion_feat.detach(), audio_feat_saved.detach()
def extract_audio_feature(self, audio, frame_num=None):
frame_num = frame_num or self.n_motions
# # Strategy 1: resample during audio feature extraction
# hidden_states = self.audio_encoder(pad_audio(audio), self.fps, frame_num=frame_num).last_hidden_state # (N, L, 768)
# Strategy 2: resample after audio feature extraction (BackResample)
hidden_states = self.audio_encoder(pad_audio(audio), self.fps,
frame_num=frame_num * 2).last_hidden_state # (N, 2L, 768)
hidden_states = hidden_states.transpose(1, 2) # (N, 768, 2L)
hidden_states = F.interpolate(hidden_states, size=frame_num, align_corners=False, mode='linear') # (N, 768, L)
hidden_states = hidden_states.transpose(1, 2) # (N, L, 768)
audio_feat = self.audio_feature_map(hidden_states) # (N, L, feature_dim)
return audio_feat
@torch.no_grad()
def sample(self, audio_or_feat, prev_motion_feat=None, prev_audio_feat=None,
motion_at_T=None, indicator=None, cfg_mode=None, cfg_cond=None, cfg_scale=1.15, flexibility=0,
dynamic_threshold=None, ret_traj=False):
# Check and convert inputs
batch_size = audio_or_feat.shape[0]
# Check CFG conditions
if cfg_mode is None: # Use default CFG mode
cfg_mode = self.cfg_mode
if cfg_cond is None: # Use default CFG conditions
cfg_cond = self.guiding_conditions
cfg_cond = [c for c in cfg_cond if c in ['audio', ]]
if not isinstance(cfg_scale, list):
cfg_scale = [cfg_scale] * len(cfg_cond)
# sort cfg_cond and cfg_scale
if len(cfg_cond) > 0:
cfg_cond, cfg_scale = zip(*sorted(zip(cfg_cond, cfg_scale), key=lambda x: ['audio', ].index(x[0])))
else:
cfg_cond, cfg_scale = [], []
if audio_or_feat.ndim == 2:
# Extract audio features
assert audio_or_feat.shape[1] == 16000 * self.n_motions / self.fps, \
f'Incorrect audio length {audio_or_feat.shape[1]}'
audio_feat = self.extract_audio_feature(audio_or_feat) # (N, L, feature_dim)
elif audio_or_feat.ndim == 3:
assert audio_or_feat.shape[1] == self.n_motions, f'Incorrect audio feature length {audio_or_feat.shape[1]}'
audio_feat = audio_or_feat
else:
raise ValueError(f'Incorrect audio input shape {audio_or_feat.shape}')
if prev_motion_feat is None:
prev_motion_feat = self.start_motion_feat.expand(batch_size, -1, -1) # (N, n_prev_motions, d_motion)
if prev_audio_feat is None:
# (N, n_prev_motions, feature_dim)
prev_audio_feat = self.start_audio_feat.expand(batch_size, -1, -1)
if motion_at_T is None:
motion_at_T = torch.randn((batch_size, self.n_motions, self.motion_feat_dim)).to(self.device)
# Prepare input for the reverse diffusion process (including optional classifier-free guidance)
if 'audio' in cfg_cond:
audio_feat_null = self.null_audio_feat.expand(batch_size, self.n_motions, -1)
else:
audio_feat_null = audio_feat
audio_feat_in = [audio_feat_null]
for cond in cfg_cond:
if cond == 'audio':
audio_feat_in.append(audio_feat)
n_entries = len(audio_feat_in)
audio_feat_in = torch.cat(audio_feat_in, dim=0)
prev_motion_feat_in = torch.cat([prev_motion_feat] * n_entries, dim=0)
prev_audio_feat_in = torch.cat([prev_audio_feat] * n_entries, dim=0)
indicator_in = torch.cat([indicator] * n_entries, dim=0) if indicator is not None else None
traj = {self.diffusion_sched.num_steps: motion_at_T}
for t in tqdm(range(self.diffusion_sched.num_steps, 0, -1)):
if t > 1:
z = torch.randn_like(motion_at_T)
else:
z = torch.zeros_like(motion_at_T)
alpha = self.diffusion_sched.alphas[t]
alpha_bar = self.diffusion_sched.alpha_bars[t]
alpha_bar_prev = self.diffusion_sched.alpha_bars[t - 1]
sigma = self.diffusion_sched.get_sigmas(t, flexibility)
motion_at_t = traj[t]
motion_in = torch.cat([motion_at_t] * n_entries, dim=0)
step_in = torch.tensor([t] * batch_size, device=self.device)
step_in = torch.cat([step_in] * n_entries, dim=0)
results = self.denoising_net(motion_in, audio_feat_in, prev_motion_feat_in,
prev_audio_feat_in, step_in, indicator_in)
# Apply thresholding if specified
if dynamic_threshold:
dt_ratio, dt_min, dt_max = dynamic_threshold
abs_results = results[:, -self.n_motions:].reshape(batch_size * n_entries, -1).abs()
s = torch.quantile(abs_results, dt_ratio, dim=1)
s = torch.clamp(s, min=dt_min, max=dt_max)
s = s[..., None, None]
results = torch.clamp(results, min=-s, max=s)
results = results.chunk(n_entries)
# Unconditional target (CFG) or the conditional target (non-CFG)
target_theta = results[0][:, -self.n_motions:]
# Classifier-free Guidance (optional)
for i in range(0, n_entries - 1):
if cfg_mode == 'independent':
target_theta += cfg_scale[i] * (
results[i + 1][:, -self.n_motions:] - results[0][:, -self.n_motions:])
elif cfg_mode == 'incremental':
target_theta += cfg_scale[i] * (
results[i + 1][:, -self.n_motions:] - results[i][:, -self.n_motions:])
else:
raise NotImplementedError(f'Unknown cfg_mode {cfg_mode}')
if self.target == 'noise':
c0 = 1 / torch.sqrt(alpha)
c1 = (1 - alpha) / torch.sqrt(1 - alpha_bar)
motion_next = c0 * (motion_at_t - c1 * target_theta) + sigma * z
elif self.target == 'sample':
c0 = (1 - alpha_bar_prev) * torch.sqrt(alpha) / (1 - alpha_bar)
c1 = (1 - alpha) * torch.sqrt(alpha_bar_prev) / (1 - alpha_bar)
motion_next = c0 * motion_at_t + c1 * target_theta + sigma * z
else:
raise ValueError('Unknown target type: {}'.format(self.target))
traj[t - 1] = motion_next.detach() # Stop gradient and save trajectory.
traj[t] = traj[t].cpu() # Move previous output to CPU memory.
if not ret_traj:
del traj[t]
if ret_traj:
return traj, motion_at_T, audio_feat
else:
return traj[0], motion_at_T, audio_feat
class DenoisingNetwork(nn.Module):
def __init__(self, device='cuda', motion_feat_dim=76,
use_indicator=None, architecture="decoder", feature_dim=512, n_heads=8,
n_layers=8, mlp_ratio=4, align_mask_width=1, no_use_learnable_pe=True, n_prev_motions=10,
n_motions=100, n_diff_steps=500, ):
super().__init__()
# Model parameters
self.motion_feat_dim = motion_feat_dim
self.use_indicator = use_indicator
# Transformer
self.architecture = architecture
self.feature_dim = feature_dim
self.n_heads = n_heads
self.n_layers = n_layers
self.mlp_ratio = mlp_ratio
self.align_mask_width = align_mask_width
self.use_learnable_pe = not no_use_learnable_pe
# sequence length
self.n_prev_motions = n_prev_motions
self.n_motions = n_motions
# Temporal embedding for the diffusion time step
self.TE = PositionalEncoding(self.feature_dim, max_len=n_diff_steps + 1)
self.diff_step_map = nn.Sequential(
nn.Linear(self.feature_dim, self.feature_dim),
nn.GELU(),
nn.Linear(self.feature_dim, self.feature_dim)
)
if self.use_learnable_pe:
# Learnable positional encoding
self.PE = nn.Parameter(torch.randn(1, 1 + self.n_prev_motions + self.n_motions, self.feature_dim))
else:
self.PE = PositionalEncoding(self.feature_dim)
# Transformer decoder
if self.architecture == 'decoder':
self.feature_proj = nn.Linear(self.motion_feat_dim + (1 if self.use_indicator else 0),
self.feature_dim)
decoder_layer = nn.TransformerDecoderLayer(
d_model=self.feature_dim, nhead=self.n_heads, dim_feedforward=self.mlp_ratio * self.feature_dim,
activation='gelu', batch_first=True
)
self.transformer = nn.TransformerDecoder(decoder_layer, num_layers=self.n_layers)
if self.align_mask_width > 0:
motion_len = self.n_prev_motions + self.n_motions
alignment_mask = enc_dec_mask(motion_len, motion_len, frame_width=1,
expansion=self.align_mask_width - 1)
# print(f"alignment_mask: ", alignment_mask.shape)
# alignment_mask = F.pad(alignment_mask, (0, 0, 1, 0), value=False)
self.register_buffer('alignment_mask', alignment_mask)
else:
self.alignment_mask = None
else:
raise ValueError(f'Unknown architecture: {self.architecture}')
# Motion decoder
self.motion_dec = nn.Sequential(
nn.Linear(self.feature_dim, self.feature_dim // 2),
nn.GELU(),
nn.Linear(self.feature_dim // 2, self.motion_feat_dim),
# nn.Tanh() # 增加了一个tanh
# nn.Softmax()
)
self.to(device)
@property
def device(self):
return next(self.parameters()).device
def forward(self, motion_feat, audio_feat, prev_motion_feat, prev_audio_feat, step, indicator=None):
"""
Args:
motion_feat: (N, L, d_motion). Noisy motion feature
audio_feat: (N, L, feature_dim)
prev_motion_feat: (N, L_p, d_motion). Padded previous motion coefficients or feature
prev_audio_feat: (N, L_p, d_audio). Padded previous motion coefficients or feature
step: (N,)
indicator: (N, L). 0/1 indicator for the real (unpadded) motion feature
Returns:
motion_feat_target: (N, L_p + L, d_motion)
"""
motion_feat = motion_feat.to(audio_feat.dtype)
# Diffusion time step embedding
diff_step_embedding = self.diff_step_map(self.TE.pe[0, step]).unsqueeze(1) # (N, 1, diff_step_dim)
if indicator is not None:
indicator = torch.cat([torch.zeros((indicator.shape[0], self.n_prev_motions), device=indicator.device),
indicator], dim=1) # (N, L_p + L)
indicator = indicator.unsqueeze(-1) # (N, L_p + L, 1)
# Concat features and embeddings
if self.architecture == 'decoder':
# print("prev_motion_feat: ", prev_motion_feat.shape, "motion_feat: ", motion_feat.shape)
feats_in = torch.cat([prev_motion_feat, motion_feat], dim=1) # (N, L_p + L, d_motion)
else:
raise ValueError(f'Unknown architecture: {self.architecture}')
if self.use_indicator:
feats_in = torch.cat([feats_in, indicator], dim=-1) # (N, L_p + L, d_motion + d_audio + 1)
feats_in = self.feature_proj(feats_in) # (N, L_p + L, feature_dim)
# feats_in = torch.cat([person_feat, feats_in], dim=1) # (N, 1 + L_p + L, feature_dim)
if self.use_learnable_pe:
# feats_in = feats_in + self.PE
feats_in = feats_in + self.PE + diff_step_embedding
else:
# feats_in = self.PE(feats_in)
feats_in = self.PE(feats_in) + diff_step_embedding
# Transformer
if self.architecture == 'decoder':
audio_feat_in = torch.cat([prev_audio_feat, audio_feat], dim=1) # (N, L_p + L, d_audio)
# print(f"feats_in: {feats_in.shape}, audio_feat_in: {audio_feat_in.shape}, memory_mask: {self.alignment_mask.shape}")
feat_out = self.transformer(feats_in, audio_feat_in, memory_mask=self.alignment_mask)
else:
raise ValueError(f'Unknown architecture: {self.architecture}')
# Decode predicted motion feature noise / sample
# motion_feat_target = self.motion_dec(feat_out[:, 1:]) # (N, L_p + L, d_motion)
motion_feat_target = self.motion_dec(feat_out) # (N, L_p + L, d_motion)
return motion_feat_target
if __name__ == "__main__":
device = "cuda"
motion_feat_dim = 76
n_motions = 100 # L
n_prev_motions = 10 # L_p
L_audio = int(16000 * n_motions / 25) # 64000
d_audio = 768
N = 5
feature_dim = 512
motion_feat = torch.ones((N, n_motions, motion_feat_dim)).to(device)
prev_motion_feat = torch.ones((N, n_prev_motions, motion_feat_dim)).to(device)
audio_or_feat = torch.ones((N, L_audio)).to(device)
prev_audio_feat = torch.ones((N, n_prev_motions, d_audio)).to(device)
time_step = torch.ones(N, dtype=torch.long).to(device)
model = DitTalkingHead().to(device)
z = model(motion_feat, audio_or_feat, prev_motion_feat=None,
prev_audio_feat=None, time_step=None, indicator=None)
traj, motion_at_T, audio_feat = z[0], z[1], z[2]
print(motion_at_T.shape, audio_feat.shape)
|