AndersonConforto commited on
Commit
edbf5dc
·
1 Parent(s): b4ca481

first commit

Browse files
Files changed (1) hide show
  1. app.py +53 -4
app.py CHANGED
@@ -7,12 +7,37 @@ import numpy as np
7
  import matplotlib.pyplot as plt
8
  import requests
9
  import os
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  # ================================
12
  # 1. Baixar pesos do Surya-1.0
13
  # ================================
14
  MODEL_URL = "https://huggingface.co/nasa-ibm-ai4science/Surya-1.0/resolve/main/surya.366m.v1.pt"
15
- MODEL_FILE = "surya.366m.v1.pt"
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  def download_model():
18
  if not os.path.exists(MODEL_FILE):
@@ -52,9 +77,33 @@ model = HelioSpectFormer(
52
  finetune=True
53
  )
54
 
55
- # Carregar pesos
56
- state_dict = torch.load(MODEL_FILE, map_location=torch.device('cpu'))
57
- model.load_state_dict(state_dict, strict=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  model.eval()
59
 
60
  # ================================
 
7
  import matplotlib.pyplot as plt
8
  import requests
9
  import os
10
+ import sys
11
+ import warnings
12
+
13
+ # Silenciar aviso depreciação do timm visto no HF Spaces
14
+ warnings.filterwarnings(
15
+ "ignore",
16
+ message="Importing from timm.models.layers is deprecated, please import via timm.layers",
17
+ category=FutureWarning,
18
+ )
19
+
20
+ # Garantir import local do pacote `surya` mesmo se CWD for diferente
21
+ sys.path.append(os.path.dirname(__file__))
22
 
23
  # ================================
24
  # 1. Baixar pesos do Surya-1.0
25
  # ================================
26
  MODEL_URL = "https://huggingface.co/nasa-ibm-ai4science/Surya-1.0/resolve/main/surya.366m.v1.pt"
27
+
28
+ # Preferir checkpoint local se existir
29
+ MODEL_CANDIDATES = [
30
+ os.path.join(os.path.dirname(__file__), "surya_model.pt"),
31
+ os.path.join(os.path.dirname(__file__), "surya.366m.v1.pt"),
32
+ ]
33
+
34
+ def _pick_model_file():
35
+ for p in MODEL_CANDIDATES:
36
+ if os.path.exists(p):
37
+ return p
38
+ return MODEL_CANDIDATES[-1]
39
+
40
+ MODEL_FILE = _pick_model_file()
41
 
42
  def download_model():
43
  if not os.path.exists(MODEL_FILE):
 
77
  finetune=True
78
  )
79
 
80
+ # Carregar pesos de forma resiliente (strict=False) e logar diferenças
81
+ def _try_load_weights(m: nn.Module, path: str) -> None:
82
+ if os.environ.get("NO_WEIGHTS", "").lower() in {"1", "true", "yes"}:
83
+ print("NO_WEIGHTS=1 -> pulando carregamento de pesos")
84
+ return
85
+ try:
86
+ raw_sd = torch.load(path, map_location=torch.device('cpu'))
87
+ model_sd = m.state_dict()
88
+ filtered = {}
89
+ dropped = []
90
+ for k, v in raw_sd.items():
91
+ if k in model_sd and model_sd[k].shape == v.shape:
92
+ filtered[k] = v
93
+ else:
94
+ dropped.append((k, tuple(v.shape) if hasattr(v, 'shape') else None, tuple(model_sd.get(k, torch.tensor(())).shape) if k in model_sd else None))
95
+ missing, unexpected = m.load_state_dict(filtered, strict=False)
96
+ print(f"Pesos carregados parcialmente. Ok={len(filtered)} Missing={len(missing)} Unexpected={len(unexpected)} Dropped={len(dropped)}")
97
+ if dropped:
98
+ print("Algumas chaves foram descartadas por mismatch (ex.:)", dropped[:5])
99
+ if missing:
100
+ print("Exemplos de missing:", missing[:10])
101
+ if unexpected:
102
+ print("Exemplos de unexpected:", unexpected[:10])
103
+ except Exception as e:
104
+ print(f"Falha ao carregar pesos de {path}: {e}")
105
+
106
+ _try_load_weights(model, MODEL_FILE)
107
  model.eval()
108
 
109
  # ================================