Spaces:
Sleeping
Sleeping
Commit
·
edbf5dc
1
Parent(s):
b4ca481
first commit
Browse files
app.py
CHANGED
@@ -7,12 +7,37 @@ import numpy as np
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
import requests
|
9 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# ================================
|
12 |
# 1. Baixar pesos do Surya-1.0
|
13 |
# ================================
|
14 |
MODEL_URL = "https://huggingface.co/nasa-ibm-ai4science/Surya-1.0/resolve/main/surya.366m.v1.pt"
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def download_model():
|
18 |
if not os.path.exists(MODEL_FILE):
|
@@ -52,9 +77,33 @@ model = HelioSpectFormer(
|
|
52 |
finetune=True
|
53 |
)
|
54 |
|
55 |
-
# Carregar pesos
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
model.eval()
|
59 |
|
60 |
# ================================
|
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
import requests
|
9 |
import os
|
10 |
+
import sys
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
# Silenciar aviso depreciação do timm visto no HF Spaces
|
14 |
+
warnings.filterwarnings(
|
15 |
+
"ignore",
|
16 |
+
message="Importing from timm.models.layers is deprecated, please import via timm.layers",
|
17 |
+
category=FutureWarning,
|
18 |
+
)
|
19 |
+
|
20 |
+
# Garantir import local do pacote `surya` mesmo se CWD for diferente
|
21 |
+
sys.path.append(os.path.dirname(__file__))
|
22 |
|
23 |
# ================================
|
24 |
# 1. Baixar pesos do Surya-1.0
|
25 |
# ================================
|
26 |
MODEL_URL = "https://huggingface.co/nasa-ibm-ai4science/Surya-1.0/resolve/main/surya.366m.v1.pt"
|
27 |
+
|
28 |
+
# Preferir checkpoint local se existir
|
29 |
+
MODEL_CANDIDATES = [
|
30 |
+
os.path.join(os.path.dirname(__file__), "surya_model.pt"),
|
31 |
+
os.path.join(os.path.dirname(__file__), "surya.366m.v1.pt"),
|
32 |
+
]
|
33 |
+
|
34 |
+
def _pick_model_file():
|
35 |
+
for p in MODEL_CANDIDATES:
|
36 |
+
if os.path.exists(p):
|
37 |
+
return p
|
38 |
+
return MODEL_CANDIDATES[-1]
|
39 |
+
|
40 |
+
MODEL_FILE = _pick_model_file()
|
41 |
|
42 |
def download_model():
|
43 |
if not os.path.exists(MODEL_FILE):
|
|
|
77 |
finetune=True
|
78 |
)
|
79 |
|
80 |
+
# Carregar pesos de forma resiliente (strict=False) e logar diferenças
|
81 |
+
def _try_load_weights(m: nn.Module, path: str) -> None:
|
82 |
+
if os.environ.get("NO_WEIGHTS", "").lower() in {"1", "true", "yes"}:
|
83 |
+
print("NO_WEIGHTS=1 -> pulando carregamento de pesos")
|
84 |
+
return
|
85 |
+
try:
|
86 |
+
raw_sd = torch.load(path, map_location=torch.device('cpu'))
|
87 |
+
model_sd = m.state_dict()
|
88 |
+
filtered = {}
|
89 |
+
dropped = []
|
90 |
+
for k, v in raw_sd.items():
|
91 |
+
if k in model_sd and model_sd[k].shape == v.shape:
|
92 |
+
filtered[k] = v
|
93 |
+
else:
|
94 |
+
dropped.append((k, tuple(v.shape) if hasattr(v, 'shape') else None, tuple(model_sd.get(k, torch.tensor(())).shape) if k in model_sd else None))
|
95 |
+
missing, unexpected = m.load_state_dict(filtered, strict=False)
|
96 |
+
print(f"Pesos carregados parcialmente. Ok={len(filtered)} Missing={len(missing)} Unexpected={len(unexpected)} Dropped={len(dropped)}")
|
97 |
+
if dropped:
|
98 |
+
print("Algumas chaves foram descartadas por mismatch (ex.:)", dropped[:5])
|
99 |
+
if missing:
|
100 |
+
print("Exemplos de missing:", missing[:10])
|
101 |
+
if unexpected:
|
102 |
+
print("Exemplos de unexpected:", unexpected[:10])
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Falha ao carregar pesos de {path}: {e}")
|
105 |
+
|
106 |
+
_try_load_weights(model, MODEL_FILE)
|
107 |
model.eval()
|
108 |
|
109 |
# ================================
|