Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from torch import nn | |
from einops import rearrange | |
from PIL import Image | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import requests | |
import os | |
# ================================ | |
# 1. Baixar pesos do Surya-1.0 | |
# ================================ | |
MODEL_URL = "https://huggingface.co/nasa-ibm-ai4science/Surya-1.0/resolve/main/surya.366m.v1.pt" | |
MODEL_FILE = "surya.366m.v1.pt" | |
def download_model(): | |
if not os.path.exists(MODEL_FILE): | |
print("Baixando pesos do Surya-1.0...") | |
r = requests.get(MODEL_URL) | |
with open(MODEL_FILE, "wb") as f: | |
f.write(r.content) | |
print("Download concluído!") | |
download_model() | |
# ================================ | |
# 2. Colar aqui a classe HelioSpectFormer | |
# ================================ | |
# Copie todo o conteúdo que você me enviou da HelioSpectFormer aqui | |
# ⚠️ Substitua a seção abaixo pelo código real do repo | |
from surya.helio_spectformer import HelioSpectFormer # se você tiver a pasta surya local | |
# ================================ | |
# 3. Instanciar o modelo com parâmetros padrão | |
# ================================ | |
model = HelioSpectFormer( | |
img_size=224, | |
patch_size=16, | |
in_chans=1, | |
embed_dim=366, | |
time_embedding={"type": "linear", "time_dim": 1}, | |
depth=8, | |
n_spectral_blocks=4, | |
num_heads=8, | |
mlp_ratio=4.0, | |
drop_rate=0.0, | |
window_size=7, | |
dp_rank=1, | |
learned_flow=False, | |
finetune=True | |
) | |
# Carregar pesos | |
state_dict = torch.load(MODEL_FILE, map_location=torch.device('cpu')) | |
model.load_state_dict(state_dict) | |
model.eval() | |
# ================================ | |
# 4. Função de inferência para heatmap | |
# ================================ | |
def infer_solar_image_heatmap(img): | |
# Pré-processamento da imagem | |
img_gray = img.convert("L").resize((224, 224)) | |
ts_tensor = torch.tensor(np.array(img_gray), dtype=torch.float32).unsqueeze(0).unsqueeze(0).unsqueeze(2) / 255.0 | |
batch = {"ts": ts_tensor, "time_delta_input": torch.zeros((1,1))} | |
# Inferência | |
with torch.no_grad(): | |
outputs = model(batch) | |
# Pegar o embedding da saída | |
emb = outputs.squeeze().numpy() | |
heatmap = emb - emb.min() | |
heatmap /= heatmap.max() + 1e-8 | |
# Criar figura do heatmap | |
plt.imshow(heatmap, cmap='hot') | |
plt.axis('off') | |
plt.tight_layout() | |
return plt.gcf() | |
# ================================ | |
# 5. Interface Gradio | |
# ================================ | |
interface = gr.Interface( | |
fn=infer_solar_image_heatmap, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Plot(label="Heatmap do embedding Surya"), | |
title="Playground Surya-1.0 com Heatmap", | |
description="Upload de imagem solar → visualize heatmap gerado pelo Surya-1.0" | |
) | |
interface.launch() | |