Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import importlib.util | |
import sys | |
import torch | |
from PIL import Image | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
# ================================ | |
# 1. Função para baixar arquivos | |
# ================================ | |
def download_file(url, filename): | |
if not os.path.exists(filename): | |
print(f"Baixando {filename}...") | |
r = requests.get(url) | |
with open(filename, "wb") as f: | |
f.write(r.content) | |
print(f"{filename} baixado!") | |
# ================================ | |
# 2. Baixar arquivos do Surya | |
# ================================ | |
files = { | |
"helio_spectformer.py": "https://raw.githubusercontent.com/NASA-IMPACT/Surya/main/surya/helio_spectformer.py", | |
"spectformer.py": "https://raw.githubusercontent.com/NASA-IMPACT/Surya/main/surya/spectformer.py", | |
"embedding.py": "https://raw.githubusercontent.com/NASA-IMPACT/Surya/main/surya/embedding.py", | |
"flow.py": "https://raw.githubusercontent.com/NASA-IMPACT/Surya/main/surya/flow.py" | |
} | |
for fname, url in files.items(): | |
download_file(url, fname) | |
# ================================ | |
# 3. Baixar pesos do Surya | |
# ================================ | |
MODEL_FILE = "surya.366m.v1.pt" | |
MODEL_URL = "https://huggingface.co/nasa-ibm-ai4science/Surya-1.0/resolve/main/surya.366m.v1.pt" | |
download_file(MODEL_URL, MODEL_FILE) | |
# ================================ | |
# 4. Importar dinamicamente as classes | |
# ================================ | |
spec = importlib.util.spec_from_file_location("helio_spectformer", "helio_spectformer.py") | |
helio_module = importlib.util.module_from_spec(spec) | |
sys.modules["helio_spectformer"] = helio_module | |
spec.loader.exec_module(helio_module) | |
HelioSpectFormer = helio_module.HelioSpectFormer | |
# ================================ | |
# 5. Instanciar o modelo | |
# ================================ | |
model = HelioSpectFormer( | |
img_size=224, | |
patch_size=16, | |
in_chans=1, | |
embed_dim=366, | |
time_embedding={"type": "linear", "time_dim": 1}, | |
depth=8, | |
n_spectral_blocks=4, | |
num_heads=8, | |
mlp_ratio=4.0, | |
drop_rate=0.0, | |
window_size=7, | |
dp_rank=1, | |
learned_flow=False, | |
finetune=True | |
) | |
state_dict = torch.load(MODEL_FILE, map_location=torch.device("cpu")) | |
model.load_state_dict(state_dict) | |
model.eval() | |
# ================================ | |
# 6. Função de inferência | |
# ================================ | |
def infer_solar_image_heatmap(img): | |
# Pré-processamento da imagem | |
img_gray = img.convert("L").resize((224,224)) | |
ts_tensor = torch.tensor(np.array(img_gray), dtype=torch.float32).unsqueeze(0).unsqueeze(0).unsqueeze(2) / 255.0 | |
batch = {"ts": ts_tensor, "time_delta_input": torch.zeros((1,1))} | |
with torch.no_grad(): | |
outputs = model(batch) | |
# Criar heatmap da saída | |
emb = outputs.squeeze().numpy() | |
heatmap = emb - emb.min() | |
heatmap /= heatmap.max() + 1e-8 | |
plt.imshow(heatmap, cmap="hot") | |
plt.axis("off") | |
plt.tight_layout() | |
return plt.gcf() | |
# ================================ | |
# 7. Interface Gradio | |
# ================================ | |
interface = gr.Interface( | |
fn=infer_solar_image_heatmap, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Plot(label="Heatmap do embedding Surya"), | |
title="Playground Surya-1.0", | |
description="Upload de imagem solar → visualize heatmap gerado pelo Surya-1.0" | |
) | |
interface.launch() | |