Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from PIL import Image | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import requests | |
import os | |
# URLs dos arquivos do modelo | |
MODEL_URL = "https://huggingface.co/nasa-ibm-ai4science/Surya-1.0/resolve/main/surya.366m.v1.pt" | |
# Nome local do arquivo | |
MODEL_FILE = "surya.366m.v1.pt" | |
# Função para baixar o modelo se não existir | |
def download_model(): | |
if not os.path.exists(MODEL_FILE): | |
print("Baixando pesos do Surya-1.0...") | |
r = requests.get(MODEL_URL) | |
with open(MODEL_FILE, "wb") as f: | |
f.write(r.content) | |
print("Download concluído!") | |
# Baixar modelo | |
download_model() | |
# Carregar modelo PyTorch | |
model = torch.load(MODEL_FILE, map_location=torch.device('cpu')) | |
model.eval() | |
# Função para gerar heatmap | |
def infer_solar_image_heatmap(img): | |
# Pré-processamento: grayscale, resize 224x224 | |
img = img.convert("L").resize((224, 224)) | |
img_tensor = torch.tensor(np.array(img), dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.0 | |
with torch.no_grad(): | |
outputs = model(img_tensor) | |
# Criar heatmap | |
emb = outputs.squeeze().numpy() | |
heatmap = emb - emb.min() | |
heatmap /= heatmap.max() + 1e-8 # normalização 0-1 | |
plt.imshow(heatmap, cmap='hot') | |
plt.axis('off') | |
plt.tight_layout() | |
return plt.gcf() | |
# Interface Gradio | |
interface = gr.Interface( | |
fn=infer_solar_image_heatmap, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Plot(label="Heatmap do embedding Surya"), | |
title="Playground Surya-1.0 com Heatmap", | |
description="Upload de imagem solar → visualize heatmap gerado pelo Surya-1.0" | |
) | |
interface.launch() | |