File size: 1,330 Bytes
dbb647b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
from transformers import AutoModel
import torch
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt

# Carregar modelo Surya
model_name = "nasa-ibm-ai4science/Surya-1.0"
model = AutoModel.from_pretrained(model_name)
model.eval()

# Função para gerar heatmap
def infer_solar_image_heatmap(img):
    # Pré-processamento: grayscale, resize 224x224
    img = img.convert("L").resize((224, 224))
    img_tensor = torch.tensor(np.array(img), dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.0

    with torch.no_grad():
        outputs = model(img_tensor)
    
    # Pegar os primeiros canais e reshapar para visualização
    emb = outputs[0].squeeze().numpy()
    heatmap = emb - emb.min()
    heatmap /= heatmap.max() + 1e-8  # normalização 0-1

    # Criar figura
    plt.imshow(heatmap, cmap='hot')
    plt.axis('off')
    plt.tight_layout()
    
    # Salvar figura em buffer
    fig = plt.gcf()
    return fig

# Interface Gradio
interface = gr.Interface(
    fn=infer_solar_image_heatmap,
    inputs=gr.Image(type="pil"),
    outputs=gr.Plot(label="Heatmap do embedding Surya"),
    title="Playground Surya-1.0 com Heatmap",
    description="Upload de imagem solar → visualize heatmap gerado pelo Surya-1.0"
)

interface.launch()