Spaces:
Sleeping
Sleeping
File size: 2,140 Bytes
be95b82 6352c36 be95b82 d91e943 be95b82 ba37341 be95b82 d91e943 db16d10 5f6c6c9 ba37341 dde29c3 ba37341 d91e943 6352c36 1e77da0 6352c36 d91e943 be95b82 44b7d5d d91e943 44b7d5d d91e943 ba37341 44b7d5d 8371819 44b7d5d ba37341 d91e943 7bec222 d91e943 6352c36 be95b82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
from transformers import pipeline
import gradio as gr
from diffusers import DiffusionPipeline
# 1. text summarizer
summarizer = pipeline("summarization", model = "facebook/bart-large-cnn")
def get_summary(text):
output = summarizer(text)
return output[0]["summary_text"]
# 2. named entity recognition
ner_model = pipeline("ner", model = "dslim/bert-large-NER")
def get_ner(text):
output = ner_model(text)
return {"text":text, "entities":output}
# 3. Image Captioning
caption_model = pipeline("image-to-text", model = "Salesforce/blip-image-captioning-base")
def get_caption(img):
output = caption_model(img)
return output[0]["generated_text"]
# 4. Image Generation
# img_model = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
img_model = DiffusionPipeline.from_pretrained("Linaqruf/anything-v3.0")
def get_img(prompt):
return img_model(prompt).images[0]
demo = gr.Blocks()
with demo:
gr.Markdown("# Try out some cool tasks!")
with gr.Tab("Text Summarization"):
sum_input = [gr.Textbox(label="Text to Summarize", placeholder="Enter text to summarize...", lines=4)]
sum_btn = gr.Button("Summarize text")
sum_output = [gr.Textbox(label="Summarized Text")]
sum_btn.click(get_summary, sum_input, sum_output)
with gr.Tab("Named Entity Recognition"):
ner_input = [gr.Textbox(label="Text to find Entities", placeholder = "Enter text...", lines = 4)]
ner_output = [gr.HighlightedText(label="Text with entities")]
ner_btn = gr.Button("Generate entities")
ner_btn.click(get_ner, ner_input, ner_output)
with gr.Tab("Image Captioning"):
cap_input = [gr.Image(label="Upload Image", type="pil")]
cap_btn = gr.Button("Generate Caption")
cap_output = [gr.Textbox(label="Caption")]
cap_btn.click(get_caption, cap_input, cap_output)
with gr.Tab("Image Generation"):
img_input = [gr.Textbox(label="Your Text")]
img_btn = gr.Button("Generate Image")
img_output = [gr.Image(label="Generated Image")]
img_btn.click(get_img, img_input, img_output)
demo.launch() |