Spaces:
Sleeping
Sleeping
File size: 2,829 Bytes
a004f09 a795478 e3965cf a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 e3965cf a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 a795478 a004f09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
try:
from langchain_community.vectorstores import Chroma
except:
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain import PromptTemplate
from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
import torch
import os
import requests # Or your Groq library
groq_api_key = os.environ.get("my_groq_api_key")
# Initialize a ChatGroq object with a temperature of 0 and the "mixtral-8x7b-32768" model.
llm = ChatGroq(temperature=0, model_name="llama3-70b-8192",api_key=groq_api_key)
model_name = "BAAI/bge-m3"
device = "cuda" if torch.cuda.is_available() else "cpu"
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': device})
# we run this cell every time
db = Chroma(embedding_function=embeddings, persist_directory='/Persian Chroma/')
memory = ConversationBufferWindowMemory(
memory_key="history", k=3, return_only_outputs=True
)
template = """
محتوای زیر بین انسان و هوش مصنوعی است. براساس این مکالمه به سوال مطرح شده جواب بده
محتوا:
{history}
"""
s="""
\n سوال: {input}
\n جواب:""".strip()
prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+'\n'+s)
chain = ConversationChain(
llm=llm,
prompt=prompt,
memory=memory,
verbose=True,
)
# Generate a response from the Llama model
def get_llama_response(message: str, history: list) -> str:
"""
Generates a conversational response from the Llama model.
Parameters:
message (str): User's input message.
history (list): Past conversation history.
Returns:
str: Generated response from the Llama model.
"""
query_text =message
results = db.similarity_search_with_relevance_scores(query_text, k=2)
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
template = """
محتوای زیر بین انسان و هوش مصنوعی است. براساس این مکالمه به سوال مطرح شده جواب بده
محتوا:
{history}
"""
s="""
\n سوال: {input}
\n جواب:""".strip()
prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+'\n'+s)
#print(template)
chain.prompt=prompt
res = chain.predict(input=query_text)
return res
#return response.strip()
import gradio as gr
iface = gr.Interface(fn=get_llama_response, inputs=gr.Textbox(),
outputs="textbox")
iface.launch(share=True) |