Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
print(
|
2 |
import argparse
|
3 |
# from dataclasses import dataclass
|
4 |
from langchain.prompts import ChatPromptTemplate
|
@@ -20,6 +20,16 @@ from dotenv import load_dotenv
|
|
20 |
import os
|
21 |
import shutil
|
22 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
from langchain_experimental.text_splitter import SemanticChunker
|
24 |
from typing import List
|
25 |
import re
|
@@ -40,35 +50,6 @@ from transformers import (
|
|
40 |
pipeline,
|
41 |
)
|
42 |
|
43 |
-
|
44 |
-
import subprocess
|
45 |
-
import sys
|
46 |
-
|
47 |
-
def install(package):
|
48 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
49 |
-
install('accelerate')
|
50 |
-
MODEL_NAME = "tiiuae/falcon-7b-instruct"
|
51 |
-
|
52 |
-
llama_pipeline = pipeline(
|
53 |
-
"text-generation",
|
54 |
-
model=MODEL_NAME,
|
55 |
-
torch_dtype=torch.float16,
|
56 |
-
device_map="auto",
|
57 |
-
)
|
58 |
-
|
59 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
60 |
-
|
61 |
-
|
62 |
-
from transformers import AutoModel,AutoTokenizer
|
63 |
-
model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
64 |
-
tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
65 |
-
|
66 |
-
|
67 |
-
# this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
|
68 |
-
# this version since causes using large amount of RAm when loading falcon model)
|
69 |
-
# a custom embedding
|
70 |
-
#from sentence_transformers import SentenceTransformer
|
71 |
-
|
72 |
warnings.filterwarnings("ignore", category=UserWarning)
|
73 |
|
74 |
|
@@ -110,10 +91,26 @@ db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
|
|
110 |
|
111 |
|
112 |
|
|
|
113 |
|
|
|
|
|
|
|
|
|
114 |
|
|
|
|
|
115 |
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
|
119 |
prompt = """
|
@@ -124,9 +121,58 @@ Current conversation:
|
|
124 |
Human: Who is Dwight K Schrute?
|
125 |
AI:
|
126 |
""".strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
|
|
|
|
|
|
130 |
|
131 |
|
132 |
template = """
|
@@ -137,42 +183,50 @@ Current conversation:
|
|
137 |
|
138 |
Human: {input}
|
139 |
AI:""".strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
|
142 |
def get_llama_response(message: str, history: list) -> str:
|
143 |
query_text = message
|
144 |
|
145 |
-
results = db.similarity_search_with_relevance_scores(query_text, k=
|
146 |
if len(results) == 0 or results[0][1] < 0.5:
|
147 |
print(f"Unable to find matching results.")
|
148 |
|
149 |
|
150 |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
)
|
172 |
-
|
173 |
-
generated_text = sequences[0]['generated_text']
|
174 |
-
response = generated_text[len(query):]
|
175 |
-
return response.strip()
|
176 |
|
177 |
import gradio as gr
|
178 |
|
|
|
1 |
+
print(5)
|
2 |
import argparse
|
3 |
# from dataclasses import dataclass
|
4 |
from langchain.prompts import ChatPromptTemplate
|
|
|
20 |
import os
|
21 |
import shutil
|
22 |
import torch
|
23 |
+
|
24 |
+
from transformers import AutoModel,AutoTokenizer
|
25 |
+
model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
26 |
+
tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
27 |
+
|
28 |
+
|
29 |
+
# this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
|
30 |
+
# this version since causes using large amount of RAm when loading falcon model)
|
31 |
+
# a custom embedding
|
32 |
+
#from sentence_transformers import SentenceTransformer
|
33 |
from langchain_experimental.text_splitter import SemanticChunker
|
34 |
from typing import List
|
35 |
import re
|
|
|
50 |
pipeline,
|
51 |
)
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
warnings.filterwarnings("ignore", category=UserWarning)
|
54 |
|
55 |
|
|
|
91 |
|
92 |
|
93 |
|
94 |
+
MODEL_NAME = "tiiuae/falcon-7b-instruct"
|
95 |
|
96 |
+
model = AutoModelForCausalLM.from_pretrained(
|
97 |
+
MODEL_NAME, trust_remote_code=True, device_map="auto",offload_folder="offload"
|
98 |
+
)
|
99 |
+
model = model.eval()
|
100 |
|
101 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
102 |
+
print(f"Model device: {model.device}")
|
103 |
|
104 |
|
105 |
+
generation_config = model.generation_config
|
106 |
+
generation_config.temperature = 0
|
107 |
+
generation_config.num_return_sequences = 1
|
108 |
+
generation_config.max_new_tokens = 256
|
109 |
+
generation_config.use_cache = False
|
110 |
+
generation_config.repetition_penalty = 1.7
|
111 |
+
generation_config.pad_token_id = tokenizer.eos_token_id
|
112 |
+
generation_config.eos_token_id = tokenizer.eos_token_id
|
113 |
+
generation_config
|
114 |
|
115 |
|
116 |
prompt = """
|
|
|
121 |
Human: Who is Dwight K Schrute?
|
122 |
AI:
|
123 |
""".strip()
|
124 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
125 |
+
input_ids = input_ids.to(model.device)
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
class StopGenerationCriteria(StoppingCriteria):
|
130 |
+
def __init__(
|
131 |
+
self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
|
132 |
+
):
|
133 |
+
stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
|
134 |
+
self.stop_token_ids = [
|
135 |
+
torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
|
136 |
+
]
|
137 |
+
|
138 |
+
def __call__(
|
139 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
140 |
+
) -> bool:
|
141 |
+
for stop_ids in self.stop_token_ids:
|
142 |
+
if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
|
143 |
+
return True
|
144 |
+
return False
|
145 |
+
|
146 |
+
|
147 |
+
stop_tokens = [["Human", ":"], ["AI", ":"]]
|
148 |
+
stopping_criteria = StoppingCriteriaList(
|
149 |
+
[StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
|
150 |
+
)
|
151 |
+
|
152 |
+
generation_pipeline = pipeline(
|
153 |
+
model=model,
|
154 |
+
tokenizer=tokenizer,
|
155 |
+
return_full_text=True,
|
156 |
+
task="text-generation",
|
157 |
+
stopping_criteria=stopping_criteria,
|
158 |
+
generation_config=generation_config,
|
159 |
+
)
|
160 |
+
|
161 |
+
llm = HuggingFacePipeline(pipeline=generation_pipeline)
|
162 |
|
163 |
|
164 |
+
class CleanupOutputParser(BaseOutputParser):
|
165 |
+
def parse(self, text: str) -> str:
|
166 |
+
user_pattern = r"\nUser"
|
167 |
+
text = re.sub(user_pattern, "", text)
|
168 |
+
human_pattern = r"\nHuman:"
|
169 |
+
text = re.sub(human_pattern, "", text)
|
170 |
+
ai_pattern = r"\nAI:"
|
171 |
+
return re.sub(ai_pattern, "", text).strip()
|
172 |
|
173 |
+
@property
|
174 |
+
def _type(self) -> str:
|
175 |
+
return "output_parser"
|
176 |
|
177 |
|
178 |
template = """
|
|
|
183 |
|
184 |
Human: {input}
|
185 |
AI:""".strip()
|
186 |
+
prompt = PromptTemplate(input_variables=["history", "input"], template=template)
|
187 |
+
|
188 |
+
memory = ConversationBufferWindowMemory(
|
189 |
+
memory_key="history", k=6, return_only_outputs=True
|
190 |
+
)
|
191 |
+
|
192 |
+
chain = ConversationChain(
|
193 |
+
llm=llm,
|
194 |
+
memory=memory,
|
195 |
+
prompt=prompt,
|
196 |
+
output_parser=CleanupOutputParser(),
|
197 |
+
verbose=True,
|
198 |
+
)
|
199 |
|
200 |
|
201 |
def get_llama_response(message: str, history: list) -> str:
|
202 |
query_text = message
|
203 |
|
204 |
+
results = db.similarity_search_with_relevance_scores(query_text, k=1)
|
205 |
if len(results) == 0 or results[0][1] < 0.5:
|
206 |
print(f"Unable to find matching results.")
|
207 |
|
208 |
|
209 |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
210 |
+
template = """
|
211 |
+
The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
|
212 |
+
Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
|
213 |
+
Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
|
214 |
+
|
215 |
+
Current conversation:
|
216 |
+
"""
|
217 |
+
s="""
|
218 |
+
{history}
|
219 |
+
Human: {input}
|
220 |
+
AI:""".strip()
|
221 |
+
|
222 |
+
|
223 |
+
prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+ s)
|
224 |
+
|
225 |
+
#print(template)
|
226 |
+
chain.prompt=prompt
|
227 |
+
res = chain(query_text)
|
228 |
+
print('responceee:res["response"]')
|
229 |
+
return(res["response"])
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
import gradio as gr
|
232 |
|