Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,16 +20,6 @@ from dotenv import load_dotenv
|
|
20 |
import os
|
21 |
import shutil
|
22 |
import torch
|
23 |
-
|
24 |
-
from transformers import AutoModel,AutoTokenizer
|
25 |
-
model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
26 |
-
tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
27 |
-
|
28 |
-
|
29 |
-
# this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
|
30 |
-
# this version since causes using large amount of RAm when loading falcon model)
|
31 |
-
# a custom embedding
|
32 |
-
#from sentence_transformers import SentenceTransformer
|
33 |
from langchain_experimental.text_splitter import SemanticChunker
|
34 |
from typing import List
|
35 |
import re
|
@@ -50,6 +40,27 @@ from transformers import (
|
|
50 |
pipeline,
|
51 |
)
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
warnings.filterwarnings("ignore", category=UserWarning)
|
54 |
|
55 |
|
@@ -91,15 +102,7 @@ db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
|
|
91 |
|
92 |
|
93 |
|
94 |
-
MODEL_NAME = "tiiuae/falcon-7b-instruct"
|
95 |
|
96 |
-
model = AutoModelForCausalLM.from_pretrained(
|
97 |
-
MODEL_NAME, trust_remote_code=True, device_map="auto",offload_folder="offload"
|
98 |
-
)
|
99 |
-
model = model.eval()
|
100 |
-
|
101 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
102 |
-
print(f"Model device: {model.device}")
|
103 |
|
104 |
|
105 |
generation_config = model.generation_config
|
@@ -224,7 +227,7 @@ def get_llama_response(message: str, history: list) -> str:
|
|
224 |
|
225 |
#print(template)
|
226 |
chain.prompt=prompt
|
227 |
-
res = chain
|
228 |
return(res["response"])
|
229 |
|
230 |
import gradio as gr
|
|
|
20 |
import os
|
21 |
import shutil
|
22 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
from langchain_experimental.text_splitter import SemanticChunker
|
24 |
from typing import List
|
25 |
import re
|
|
|
40 |
pipeline,
|
41 |
)
|
42 |
|
43 |
+
|
44 |
+
MODEL_NAME = "tiiuae/falcon-7b-instruct"
|
45 |
+
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
47 |
+
MODEL_NAME, trust_remote_code=True, device_map="auto",offload_folder="offload"
|
48 |
+
)
|
49 |
+
model = model.eval()
|
50 |
+
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
52 |
+
print(f"Model device: {model.device}")
|
53 |
+
|
54 |
+
from transformers import AutoModel,AutoTokenizer
|
55 |
+
model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
56 |
+
tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
57 |
+
|
58 |
+
|
59 |
+
# this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
|
60 |
+
# this version since causes using large amount of RAm when loading falcon model)
|
61 |
+
# a custom embedding
|
62 |
+
#from sentence_transformers import SentenceTransformer
|
63 |
+
|
64 |
warnings.filterwarnings("ignore", category=UserWarning)
|
65 |
|
66 |
|
|
|
102 |
|
103 |
|
104 |
|
|
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
|
108 |
generation_config = model.generation_config
|
|
|
227 |
|
228 |
#print(template)
|
229 |
chain.prompt=prompt
|
230 |
+
res = chain(query_text)
|
231 |
return(res["response"])
|
232 |
|
233 |
import gradio as gr
|