Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,12 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
from transformers import BitsAndBytesConfig
|
| 3 |
-
print(5)
|
| 4 |
import argparse
|
| 5 |
# from dataclasses import dataclass
|
| 6 |
from langchain.prompts import ChatPromptTemplate
|
| 7 |
-
|
| 8 |
try:
|
| 9 |
from langchain_community.vectorstores import Chroma
|
| 10 |
except:
|
| 11 |
from langchain_community.vectorstores import Chroma
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# from langchain.document_loaders import DirectoryLoader
|
| 14 |
from langchain_community.document_loaders import DirectoryLoader
|
|
@@ -21,19 +19,8 @@ import openai
|
|
| 21 |
from dotenv import load_dotenv
|
| 22 |
import os
|
| 23 |
import shutil
|
| 24 |
-
import torch
|
| 25 |
|
| 26 |
-
from transformers import AutoModel,AutoTokenizer
|
| 27 |
-
model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
| 28 |
-
tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
| 29 |
|
| 30 |
-
|
| 31 |
-
# this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
|
| 32 |
-
# this version since causes using large amount of RAm when loading falcon model)
|
| 33 |
-
# a custom embedding
|
| 34 |
-
#from sentence_transformers import SentenceTransformer
|
| 35 |
-
from langchain_experimental.text_splitter import SemanticChunker
|
| 36 |
-
from typing import List
|
| 37 |
import re
|
| 38 |
import warnings
|
| 39 |
from typing import List
|
|
@@ -54,57 +41,49 @@ from transformers import (
|
|
| 54 |
|
| 55 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 56 |
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
|
| 66 |
-
# Get the model outputs
|
| 67 |
-
with torch.no_grad():
|
| 68 |
-
outputs = self.model(**inputs)
|
| 69 |
|
| 70 |
-
# Mean pooling to get sentence embeddings
|
| 71 |
-
embeddings = outputs.last_hidden_state.mean(dim=1)
|
| 72 |
-
return [embeddings[i].tolist() for i, sentence in enumerate(texts)]
|
| 73 |
-
def embed_query(self, query: str) -> List[float]:
|
| 74 |
-
inputs = tokenizer2(query, padding=True, truncation=True, return_tensors="pt")
|
| 75 |
|
| 76 |
-
# Get the model outputs
|
| 77 |
-
with torch.no_grad():
|
| 78 |
-
outputs = self.model(**inputs)
|
| 79 |
|
| 80 |
-
# Mean pooling to get sentence embeddings
|
| 81 |
-
embeddings = outputs.last_hidden_state.mean(dim=1)
|
| 82 |
-
return embeddings[0].tolist()
|
| 83 |
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
|
|
|
|
| 88 |
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
CHROMA_PATH = "chroma8"
|
| 91 |
# call the chroma generated in a directory
|
| 92 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
bnb_config = BitsAndBytesConfig(
|
| 99 |
-
load_in_4bit=True,
|
| 100 |
-
)
|
| 101 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 102 |
-
MODEL_NAME, trust_remote_code=True, device_map="auto",offload_folder="offload",quantization_config=bnb_config
|
| 103 |
-
)
|
| 104 |
-
model = model.eval()
|
| 105 |
|
| 106 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 107 |
-
print(f"Model device: {model.device}")
|
| 108 |
|
| 109 |
|
| 110 |
generation_config = model.generation_config
|
|
@@ -117,7 +96,6 @@ generation_config.pad_token_id = tokenizer.eos_token_id
|
|
| 117 |
generation_config.eos_token_id = tokenizer.eos_token_id
|
| 118 |
generation_config
|
| 119 |
|
| 120 |
-
|
| 121 |
prompt = """
|
| 122 |
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
|
| 123 |
|
|
@@ -129,8 +107,6 @@ AI:
|
|
| 129 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 130 |
input_ids = input_ids.to(model.device)
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
class StopGenerationCriteria(StoppingCriteria):
|
| 135 |
def __init__(
|
| 136 |
self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
|
|
@@ -148,12 +124,12 @@ class StopGenerationCriteria(StoppingCriteria):
|
|
| 148 |
return True
|
| 149 |
return False
|
| 150 |
|
| 151 |
-
|
| 152 |
stop_tokens = [["Human", ":"], ["AI", ":"]]
|
| 153 |
stopping_criteria = StoppingCriteriaList(
|
| 154 |
[StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
|
| 155 |
)
|
| 156 |
|
|
|
|
| 157 |
generation_pipeline = pipeline(
|
| 158 |
model=model,
|
| 159 |
tokenizer=tokenizer,
|
|
@@ -166,6 +142,26 @@ generation_pipeline = pipeline(
|
|
| 166 |
llm = HuggingFacePipeline(pipeline=generation_pipeline)
|
| 167 |
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
class CleanupOutputParser(BaseOutputParser):
|
| 170 |
def parse(self, text: str) -> str:
|
| 171 |
user_pattern = r"\nUser"
|
|
@@ -180,18 +176,36 @@ class CleanupOutputParser(BaseOutputParser):
|
|
| 180 |
return "output_parser"
|
| 181 |
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
template = """
|
| 184 |
-
The following
|
| 185 |
-
|
|
|
|
| 186 |
|
|
|
|
| 187 |
{history}
|
| 188 |
-
|
| 189 |
Human: {input}
|
| 190 |
AI:""".strip()
|
|
|
|
| 191 |
prompt = PromptTemplate(input_variables=["history", "input"], template=template)
|
| 192 |
|
| 193 |
memory = ConversationBufferWindowMemory(
|
| 194 |
-
memory_key="history", k=
|
| 195 |
)
|
| 196 |
|
| 197 |
chain = ConversationChain(
|
|
@@ -203,36 +217,53 @@ chain = ConversationChain(
|
|
| 203 |
)
|
| 204 |
|
| 205 |
|
| 206 |
-
|
| 207 |
def get_llama_response(message: str, history: list) -> str:
|
| 208 |
-
|
|
|
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
|
| 219 |
-
Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
|
| 220 |
|
| 221 |
-
Current conversation:
|
| 222 |
-
"""
|
| 223 |
-
s="""
|
| 224 |
-
{history}
|
| 225 |
-
Human: {input}
|
| 226 |
-
AI:""".strip()
|
| 227 |
|
|
|
|
| 228 |
|
| 229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
-
#print(template)
|
| 232 |
-
chain.prompt=prompt
|
| 233 |
-
res = chain(query_text)
|
| 234 |
-
return(res["response"])
|
| 235 |
|
| 236 |
-
import gradio as gr
|
| 237 |
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import argparse
|
| 2 |
# from dataclasses import dataclass
|
| 3 |
from langchain.prompts import ChatPromptTemplate
|
|
|
|
| 4 |
try:
|
| 5 |
from langchain_community.vectorstores import Chroma
|
| 6 |
except:
|
| 7 |
from langchain_community.vectorstores import Chroma
|
| 8 |
+
#from langchain_openai import OpenAIEmbeddings
|
| 9 |
+
#from langchain_openai import ChatOpenAI
|
| 10 |
|
| 11 |
# from langchain.document_loaders import DirectoryLoader
|
| 12 |
from langchain_community.document_loaders import DirectoryLoader
|
|
|
|
| 19 |
from dotenv import load_dotenv
|
| 20 |
import os
|
| 21 |
import shutil
|
|
|
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
import re
|
| 25 |
import warnings
|
| 26 |
from typing import List
|
|
|
|
| 41 |
|
| 42 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 43 |
|
| 44 |
+
MODEL_NAME = "tiiuae/falcon-7b-instruct"
|
| 45 |
|
| 46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
+
MODEL_NAME, trust_remote_code=True, load_in_8bit=True, device_map="auto",
|
| 48 |
+
)
|
| 49 |
+
model = model.eval()
|
| 50 |
|
| 51 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 52 |
+
print(f"Model device: {model.device}")
|
| 53 |
|
|
|
|
|
|
|
|
|
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
|
|
|
|
|
|
|
|
|
| 56 |
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
+
# Create CLI.
|
| 60 |
+
#parser = argparse.ArgumentParser()
|
| 61 |
+
#parser.add_argument("query_text", type=str, help="The query text.")
|
| 62 |
+
#args = parser.parse_args()
|
| 63 |
+
#query_text = args.query_text
|
| 64 |
|
| 65 |
+
# a sample query to be asked from the bot and it is expected to be answered based on the template
|
| 66 |
+
query_text="what did alice say to rabbit"
|
| 67 |
|
| 68 |
+
# Prepare the DB.
|
| 69 |
+
#embedding_function = OpenAIEmbeddings() # main
|
| 70 |
|
| 71 |
+
CHROMA_PATH = "/content/drive/My Drive/chroma8"
|
| 72 |
# call the chroma generated in a directory
|
| 73 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
|
| 74 |
|
| 75 |
+
# Search the DB for similar documents to the query.
|
| 76 |
+
results = db.similarity_search_with_relevance_scores(query_text, k=2)
|
| 77 |
+
if len(results) == 0 or results[0][1] < 0.5:
|
| 78 |
+
print(f"Unable to find matching results.")
|
| 79 |
|
| 80 |
|
| 81 |
+
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
| 82 |
+
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
|
| 83 |
+
prompt = prompt_template.format(context=context_text, question=query_text)
|
| 84 |
+
print(prompt)
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
|
|
|
|
|
|
| 87 |
|
| 88 |
|
| 89 |
generation_config = model.generation_config
|
|
|
|
| 96 |
generation_config.eos_token_id = tokenizer.eos_token_id
|
| 97 |
generation_config
|
| 98 |
|
|
|
|
| 99 |
prompt = """
|
| 100 |
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
|
| 101 |
|
|
|
|
| 107 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 108 |
input_ids = input_ids.to(model.device)
|
| 109 |
|
|
|
|
|
|
|
| 110 |
class StopGenerationCriteria(StoppingCriteria):
|
| 111 |
def __init__(
|
| 112 |
self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
|
|
|
|
| 124 |
return True
|
| 125 |
return False
|
| 126 |
|
|
|
|
| 127 |
stop_tokens = [["Human", ":"], ["AI", ":"]]
|
| 128 |
stopping_criteria = StoppingCriteriaList(
|
| 129 |
[StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
|
| 130 |
)
|
| 131 |
|
| 132 |
+
|
| 133 |
generation_pipeline = pipeline(
|
| 134 |
model=model,
|
| 135 |
tokenizer=tokenizer,
|
|
|
|
| 142 |
llm = HuggingFacePipeline(pipeline=generation_pipeline)
|
| 143 |
|
| 144 |
|
| 145 |
+
# propably sets the number of previous conversation history to take into account for new answers
|
| 146 |
+
template = """
|
| 147 |
+
The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
|
| 148 |
+
Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
|
| 149 |
+
Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
|
| 150 |
+
|
| 151 |
+
Current conversation:
|
| 152 |
+
{history}
|
| 153 |
+
Human: {input}
|
| 154 |
+
AI:""".strip()
|
| 155 |
+
|
| 156 |
+
prompt = PromptTemplate(input_variables=["history", "input"], template=template)
|
| 157 |
+
memory = ConversationBufferWindowMemory(
|
| 158 |
+
memory_key="history", k=6, return_only_outputs=True
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
chain = ConversationChain(llm=llm, memory=memory, prompt=prompt, verbose=True)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
class CleanupOutputParser(BaseOutputParser):
|
| 166 |
def parse(self, text: str) -> str:
|
| 167 |
user_pattern = r"\nUser"
|
|
|
|
| 176 |
return "output_parser"
|
| 177 |
|
| 178 |
|
| 179 |
+
|
| 180 |
+
class CleanupOutputParser(BaseOutputParser):
|
| 181 |
+
def parse(self, text: str) -> str:
|
| 182 |
+
user_pattern = r"\nUser"
|
| 183 |
+
text = re.sub(user_pattern, "", text)
|
| 184 |
+
human_pattern = r"\nquestion:"
|
| 185 |
+
text = re.sub(human_pattern, "", text)
|
| 186 |
+
ai_pattern = r"\nanswer:"
|
| 187 |
+
return re.sub(ai_pattern, "", text).strip()
|
| 188 |
+
|
| 189 |
+
@property
|
| 190 |
+
def _type(self) -> str:
|
| 191 |
+
return "output_parser"
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
template = """
|
| 196 |
+
The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
|
| 197 |
+
Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
|
| 198 |
+
Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
|
| 199 |
|
| 200 |
+
Current conversation:
|
| 201 |
{history}
|
|
|
|
| 202 |
Human: {input}
|
| 203 |
AI:""".strip()
|
| 204 |
+
|
| 205 |
prompt = PromptTemplate(input_variables=["history", "input"], template=template)
|
| 206 |
|
| 207 |
memory = ConversationBufferWindowMemory(
|
| 208 |
+
memory_key="history", k=3, return_only_outputs=True
|
| 209 |
)
|
| 210 |
|
| 211 |
chain = ConversationChain(
|
|
|
|
| 217 |
)
|
| 218 |
|
| 219 |
|
| 220 |
+
# Generate a response from the Llama model
|
| 221 |
def get_llama_response(message: str, history: list) -> str:
|
| 222 |
+
"""
|
| 223 |
+
Generates a conversational response from the Llama model.
|
| 224 |
|
| 225 |
+
Parameters:
|
| 226 |
+
message (str): User's input message.
|
| 227 |
+
history (list): Past conversation history.
|
| 228 |
|
| 229 |
+
Returns:
|
| 230 |
+
str: Generated response from the Llama model.
|
| 231 |
+
"""
|
| 232 |
+
query_text =message
|
| 233 |
|
| 234 |
+
results = db.similarity_search_with_relevance_scores(query_text, k=2)
|
| 235 |
+
if len(results) == 0 or results[0][1] < 0.5:
|
| 236 |
+
print(f"Unable to find matching results.")
|
|
|
|
|
|
|
| 237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
+
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results ])
|
| 240 |
|
| 241 |
+
template = """
|
| 242 |
+
The following is a conversation between a human an AI. Answer question based only on the conversation.
|
| 243 |
+
|
| 244 |
+
Current conversation:
|
| 245 |
+
{history}
|
| 246 |
+
|
| 247 |
+
"""
|
| 248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
|
|
|
| 250 |
|
| 251 |
+
s="""
|
| 252 |
+
|
| 253 |
+
\n question: {input}
|
| 254 |
+
|
| 255 |
+
\n answer:""".strip()
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+'\n'+s)
|
| 259 |
+
|
| 260 |
+
#print(template)
|
| 261 |
+
chain.prompt=prompt
|
| 262 |
+
res = chain.predict(input=query_text)
|
| 263 |
+
return res
|
| 264 |
+
#return response.strip()
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
import gradio as gr
|
| 268 |
+
iface = gr.Interface(fn=get_llama_response, inputs="text", outputs="text")
|
| 269 |
+
iface.launch(share=True)
|