AminFaraji commited on
Commit
4d70bfd
·
verified ·
1 Parent(s): 8eb01ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +228 -8
app.py CHANGED
@@ -1,14 +1,234 @@
1
  import spaces
2
- from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- # Load your model
5
- model = pipeline("text-generation", model="gpt2")
6
- model.to("cuda")
7
 
8
  @spaces.GPU
9
- def generate_text(prompt):
10
- return model(prompt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  import gradio as gr
13
- iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
14
- iface.launch()
 
1
  import spaces
2
+ print(5)
3
+ import argparse
4
+ # from dataclasses import dataclass
5
+ from langchain.prompts import ChatPromptTemplate
6
+
7
+ try:
8
+ from langchain_community.vectorstores import Chroma
9
+ except:
10
+ from langchain_community.vectorstores import Chroma
11
+
12
+ # from langchain.document_loaders import DirectoryLoader
13
+ from langchain_community.document_loaders import DirectoryLoader
14
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
15
+ from langchain.schema import Document
16
+ # from langchain.embeddings import OpenAIEmbeddings
17
+ #from langchain_openai import OpenAIEmbeddings
18
+ from langchain_community.vectorstores import Chroma
19
+ import openai
20
+ from dotenv import load_dotenv
21
+ import os
22
+ import shutil
23
+ import torch
24
+
25
+ from transformers import AutoModel,AutoTokenizer
26
+ model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
27
+ tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
28
+
29
+
30
+ # this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
31
+ # this version since causes using large amount of RAm when loading falcon model)
32
+ # a custom embedding
33
+ #from sentence_transformers import SentenceTransformer
34
+ from langchain_experimental.text_splitter import SemanticChunker
35
+ from typing import List
36
+ import re
37
+ import warnings
38
+ from typing import List
39
+
40
+ import torch
41
+ from langchain import PromptTemplate
42
+ from langchain.chains import ConversationChain
43
+ from langchain.chains.conversation.memory import ConversationBufferWindowMemory
44
+ from langchain.llms import HuggingFacePipeline
45
+ from langchain.schema import BaseOutputParser
46
+ from transformers import (
47
+ AutoModelForCausalLM,
48
+ AutoTokenizer,
49
+ StoppingCriteria,
50
+ StoppingCriteriaList,
51
+ pipeline,
52
+ )
53
+
54
+ warnings.filterwarnings("ignore", category=UserWarning)
55
+
56
+
57
+ class MyEmbeddings:
58
+ def __init__(self):
59
+ #self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
60
+ self.model=model2
61
+
62
+ def embed_documents(self, texts: List[str]) -> List[List[float]]:
63
+ inputs = tokenizer2(texts, padding=True, truncation=True, return_tensors="pt")
64
+
65
+ # Get the model outputs
66
+ with torch.no_grad():
67
+ outputs = self.model(**inputs)
68
+
69
+ # Mean pooling to get sentence embeddings
70
+ embeddings = outputs.last_hidden_state.mean(dim=1)
71
+ return [embeddings[i].tolist() for i, sentence in enumerate(texts)]
72
+ def embed_query(self, query: str) -> List[float]:
73
+ inputs = tokenizer2(query, padding=True, truncation=True, return_tensors="pt")
74
+
75
+ # Get the model outputs
76
+ with torch.no_grad():
77
+ outputs = self.model(**inputs)
78
+
79
+ # Mean pooling to get sentence embeddings
80
+ embeddings = outputs.last_hidden_state.mean(dim=1)
81
+ return embeddings[0].tolist()
82
+
83
+
84
+ embeddings = MyEmbeddings()
85
+
86
+ splitter = SemanticChunker(embeddings)
87
+
88
+
89
+ CHROMA_PATH = "chroma8"
90
+ # call the chroma generated in a directory
91
+ db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
92
+
93
+
94
+
95
+ MODEL_NAME = "tiiuae/falcon-7b-instruct"
96
+
97
+ model = AutoModelForCausalLM.from_pretrained(
98
+ MODEL_NAME, trust_remote_code=True, device_map="auto",offload_folder="offload"
99
+ )
100
+ model = model.eval()
101
+
102
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
103
+ print(f"Model device: {model.device}")
104
+
105
+
106
+ generation_config = model.generation_config
107
+ generation_config.temperature = 0
108
+ generation_config.num_return_sequences = 1
109
+ generation_config.max_new_tokens = 256
110
+ generation_config.use_cache = False
111
+ generation_config.repetition_penalty = 1.7
112
+ generation_config.pad_token_id = tokenizer.eos_token_id
113
+ generation_config.eos_token_id = tokenizer.eos_token_id
114
+ generation_config
115
+
116
+
117
+ prompt = """
118
+ The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
119
+
120
+ Current conversation:
121
+
122
+ Human: Who is Dwight K Schrute?
123
+ AI:
124
+ """.strip()
125
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
126
+ input_ids = input_ids.to(model.device)
127
+
128
+
129
+
130
+ class StopGenerationCriteria(StoppingCriteria):
131
+ def __init__(
132
+ self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
133
+ ):
134
+ stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
135
+ self.stop_token_ids = [
136
+ torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
137
+ ]
138
+
139
+ def __call__(
140
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
141
+ ) -> bool:
142
+ for stop_ids in self.stop_token_ids:
143
+ if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
144
+ return True
145
+ return False
146
+
147
+
148
+ stop_tokens = [["Human", ":"], ["AI", ":"]]
149
+ stopping_criteria = StoppingCriteriaList(
150
+ [StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
151
+ )
152
+
153
+ generation_pipeline = pipeline(
154
+ model=model,
155
+ tokenizer=tokenizer,
156
+ return_full_text=True,
157
+ task="text-generation",
158
+ stopping_criteria=stopping_criteria,
159
+ generation_config=generation_config,
160
+ )
161
+
162
+ llm = HuggingFacePipeline(pipeline=generation_pipeline)
163
+
164
+
165
+ class CleanupOutputParser(BaseOutputParser):
166
+ def parse(self, text: str) -> str:
167
+ user_pattern = r"\nUser"
168
+ text = re.sub(user_pattern, "", text)
169
+ human_pattern = r"\nHuman:"
170
+ text = re.sub(human_pattern, "", text)
171
+ ai_pattern = r"\nAI:"
172
+ return re.sub(ai_pattern, "", text).strip()
173
+
174
+ @property
175
+ def _type(self) -> str:
176
+ return "output_parser"
177
+
178
+
179
+ template = """
180
+ The following
181
+ Current conversation:
182
+
183
+ {history}
184
+
185
+ Human: {input}
186
+ AI:""".strip()
187
+ prompt = PromptTemplate(input_variables=["history", "input"], template=template)
188
+
189
+ memory = ConversationBufferWindowMemory(
190
+ memory_key="history", k=6, return_only_outputs=True
191
+ )
192
+
193
+ chain = ConversationChain(
194
+ llm=llm,
195
+ memory=memory,
196
+ prompt=prompt,
197
+ output_parser=CleanupOutputParser(),
198
+ verbose=True,
199
+ )
200
 
 
 
 
201
 
202
  @spaces.GPU
203
+ def get_llama_response(message: str, history: list) -> str:
204
+ query_text = message
205
+
206
+ results = db.similarity_search_with_relevance_scores(query_text, k=3)
207
+ if len(results) == 0 or results[0][1] < 0.5:
208
+ print(f"Unable to find matching results.")
209
+
210
+
211
+ context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
212
+ template = """
213
+ The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
214
+ Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
215
+ Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
216
+
217
+ Current conversation:
218
+ """
219
+ s="""
220
+ {history}
221
+ Human: {input}
222
+ AI:""".strip()
223
+
224
+
225
+ prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+ s)
226
+
227
+ #print(template)
228
+ chain.prompt=prompt
229
+ res = chain(query_text)
230
+ return(res["response"])
231
 
232
  import gradio as gr
233
+
234
+ gr.ChatInterface(get_llama_response).launch()