AminFaraji commited on
Commit
210160b
·
verified ·
1 Parent(s): 1cd8fb4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -214
app.py CHANGED
@@ -1,242 +1,43 @@
1
- print(55877)
2
- import argparse
3
- # from dataclasses import dataclass
4
- from langchain.prompts import ChatPromptTemplate
5
  try:
6
  from langchain_community.vectorstores import Chroma
7
  except:
8
  from langchain_community.vectorstores import Chroma
9
- #from langchain_openai import OpenAIEmbeddings
10
- #from langchain_openai import ChatOpenAI
11
-
12
- # from langchain.document_loaders import DirectoryLoader
13
- from langchain_community.document_loaders import DirectoryLoader
14
- from langchain.text_splitter import RecursiveCharacterTextSplitter
15
- from langchain.schema import Document
16
- # from langchain.embeddings import OpenAIEmbeddings
17
- #from langchain_openai import OpenAIEmbeddings
18
- from langchain_community.vectorstores import Chroma
19
- import openai
20
- from dotenv import load_dotenv
21
- import os
22
- import shutil
23
-
24
-
25
- import re
26
- import warnings
27
- from typing import List
28
-
29
- import torch
30
- from langchain import PromptTemplate
31
  from langchain.chains import ConversationChain
32
  from langchain.chains.conversation.memory import ConversationBufferWindowMemory
33
- from langchain.llms import HuggingFacePipeline
34
- from langchain.schema import BaseOutputParser
35
- from transformers import (
36
- AutoModelForCausalLM,
37
- AutoTokenizer,
38
- StoppingCriteria,
39
- StoppingCriteriaList,
40
- pipeline,
41
- )
42
-
43
- warnings.filterwarnings("ignore", category=UserWarning)
44
-
45
- MODEL_NAME = "tiiuae/falcon-7b-instruct"
46
-
47
- model = AutoModelForCausalLM.from_pretrained(
48
- MODEL_NAME, trust_remote_code=True, device_map="auto",offload_folder="offload"
49
- )
50
- model = model.eval()
51
-
52
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
53
- print(f"Model device: {model.device}")
54
-
55
- # a custom embedding
56
- from sentence_transformers import SentenceTransformer
57
- from langchain_experimental.text_splitter import SemanticChunker
58
- from typing import List
59
-
60
-
61
- class MyEmbeddings:
62
- def __init__(self):
63
- self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
64
- #self.model=model
65
-
66
- def embed_documents(self, texts: List[str]) -> List[List[float]]:
67
- return [self.model.encode(t).tolist() for t in texts]
68
- def embed_query(self, query: str) -> List[float]:
69
- return [self.model.encode([query])][0][0].tolist()
70
-
71
-
72
- embeddings = MyEmbeddings()
73
-
74
- splitter = SemanticChunker(embeddings)
75
-
76
 
77
 
 
 
 
78
 
79
- # Create CLI.
80
- #parser = argparse.ArgumentParser()
81
- #parser.add_argument("query_text", type=str, help="The query text.")
82
- #args = parser.parse_args()
83
- #query_text = args.query_text
84
 
85
- # a sample query to be asked from the bot and it is expected to be answered based on the template
86
- query_text="what did alice say to rabbit"
87
 
88
- # Prepare the DB.
89
- #embedding_function = OpenAIEmbeddings() # main
90
 
91
- CHROMA_PATH = "chroma8"
92
- # call the chroma generated in a directory
93
- db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
94
 
95
- # Search the DB for similar documents to the query.
96
- results = db.similarity_search_with_relevance_scores(query_text, k=2)
97
- if len(results) == 0 or results[0][1] < 0.5:
98
- print(f"Unable to find matching results.")
99
 
100
 
101
- context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
102
- prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
103
- prompt = prompt_template.format(context=context_text, question=query_text)
104
- print(prompt)
105
-
106
-
107
-
108
-
109
- generation_config = model.generation_config
110
- generation_config.temperature = 0
111
- generation_config.num_return_sequences = 1
112
- generation_config.max_new_tokens = 256
113
- generation_config.use_cache = False
114
- generation_config.repetition_penalty = 1.7
115
- generation_config.pad_token_id = tokenizer.eos_token_id
116
- generation_config.eos_token_id = tokenizer.eos_token_id
117
- generation_config
118
-
119
- prompt = """
120
- The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
121
-
122
- Current conversation:
123
-
124
- Human: Who is Dwight K Schrute?
125
- AI:
126
- """.strip()
127
- input_ids = tokenizer(prompt, return_tensors="pt").input_ids
128
- input_ids = input_ids.to(model.device)
129
-
130
- class StopGenerationCriteria(StoppingCriteria):
131
- def __init__(
132
- self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
133
- ):
134
- stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
135
- self.stop_token_ids = [
136
- torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
137
- ]
138
-
139
- def __call__(
140
- self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
141
- ) -> bool:
142
- for stop_ids in self.stop_token_ids:
143
- if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
144
- return True
145
- return False
146
-
147
- stop_tokens = [["Human", ":"], ["AI", ":"]]
148
- stopping_criteria = StoppingCriteriaList(
149
- [StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
150
- )
151
-
152
-
153
- generation_pipeline = pipeline(
154
- model=model,
155
- tokenizer=tokenizer,
156
- return_full_text=True,
157
- task="text-generation",
158
- stopping_criteria=stopping_criteria,
159
- generation_config=generation_config,
160
- )
161
-
162
- llm = HuggingFacePipeline(pipeline=generation_pipeline)
163
-
164
-
165
- # propably sets the number of previous conversation history to take into account for new answers
166
- template = """
167
- The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
168
- Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
169
- Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
170
-
171
- Current conversation:
172
- {history}
173
- Human: {input}
174
- AI:""".strip()
175
-
176
- prompt = PromptTemplate(input_variables=["history", "input"], template=template)
177
- memory = ConversationBufferWindowMemory(
178
- memory_key="history", k=6, return_only_outputs=True
179
- )
180
-
181
- chain = ConversationChain(llm=llm, memory=memory, prompt=prompt, verbose=True)
182
-
183
-
184
-
185
- class CleanupOutputParser(BaseOutputParser):
186
- def parse(self, text: str) -> str:
187
- user_pattern = r"\nUser"
188
- text = re.sub(user_pattern, "", text)
189
- human_pattern = r"\nHuman:"
190
- text = re.sub(human_pattern, "", text)
191
- ai_pattern = r"\nAI:"
192
- return re.sub(ai_pattern, "", text).strip()
193
-
194
- @property
195
- def _type(self) -> str:
196
- return "output_parser"
197
-
198
-
199
-
200
- class CleanupOutputParser(BaseOutputParser):
201
- def parse(self, text: str) -> str:
202
- user_pattern = r"\nUser"
203
- text = re.sub(user_pattern, "", text)
204
- human_pattern = r"\nquestion:"
205
- text = re.sub(human_pattern, "", text)
206
- ai_pattern = r"\nanswer:"
207
- return re.sub(ai_pattern, "", text).strip()
208
-
209
- @property
210
- def _type(self) -> str:
211
- return "output_parser"
212
-
213
-
214
-
215
- template = """
216
- The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
217
- Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
218
- Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
219
-
220
- Current conversation:
221
- {history}
222
- Human: {input}
223
- AI:""".strip()
224
-
225
- prompt = PromptTemplate(input_variables=["history", "input"], template=template)
226
 
227
  memory = ConversationBufferWindowMemory(
228
  memory_key="history", k=3, return_only_outputs=True
229
  )
230
 
 
231
  chain = ConversationChain(
232
  llm=llm,
233
- memory=memory,
234
  prompt=prompt,
235
- output_parser=CleanupOutputParser(),
236
  verbose=True,
237
  )
238
 
239
 
 
 
240
  # Generate a response from the Llama model
241
  def get_llama_response(message: str, history: list) -> str:
242
  """
@@ -284,6 +85,11 @@ def get_llama_response(message: str, history: list) -> str:
284
  #return response.strip()
285
 
286
 
 
287
  import gradio as gr
288
- iface = gr.Interface(fn=get_llama_response, inputs="text", outputs="text")
289
- iface.launch(share=True)
 
 
 
 
 
 
 
 
 
1
  try:
2
  from langchain_community.vectorstores import Chroma
3
  except:
4
  from langchain_community.vectorstores import Chroma
5
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  from langchain.chains import ConversationChain
7
  from langchain.chains.conversation.memory import ConversationBufferWindowMemory
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
 
10
+ # Import the necessary libraries.
11
+ from langchain_core.prompts import ChatPromptTemplate
12
+ from langchain_groq import ChatGroq
13
 
14
+ # Initialize a ChatGroq object with a temperature of 0 and the "mixtral-8x7b-32768" model.
15
+ llm = ChatGroq(temperature=0, model_name="llama3-70b-8192",api_key='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')
 
 
 
16
 
17
+ from langchain_community.embeddings import SentenceTransformerEmbeddings
 
18
 
19
+ embeddings = SentenceTransformerEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"trust_remote_code":True})
 
20
 
 
 
 
21
 
 
 
 
 
22
 
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  memory = ConversationBufferWindowMemory(
26
  memory_key="history", k=3, return_only_outputs=True
27
  )
28
 
29
+
30
  chain = ConversationChain(
31
  llm=llm,
32
+
33
  prompt=prompt,
34
+ memory=memory,
35
  verbose=True,
36
  )
37
 
38
 
39
+
40
+
41
  # Generate a response from the Llama model
42
  def get_llama_response(message: str, history: list) -> str:
43
  """
 
85
  #return response.strip()
86
 
87
 
88
+
89
  import gradio as gr
90
+ iface = gr.Interface(fn=get_llama_response, inputs=gr.Textbox(),
91
+ outputs="textbox")
92
+ iface.launch(share=True)
93
+
94
+
95
+