AminFaraji commited on
Commit
18207b4
·
verified ·
1 Parent(s): 39e547d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -234
app.py CHANGED
@@ -1,237 +1,15 @@
 
 
1
 
2
- import argparse
3
- # from dataclasses import dataclass
4
- from langchain.prompts import ChatPromptTemplate
5
-
6
- try:
7
- from langchain_community.vectorstores import Chroma
8
- except:
9
- from langchain_community.vectorstores import Chroma
10
-
11
- # from langchain.document_loaders import DirectoryLoader
12
- from langchain_community.document_loaders import DirectoryLoader
13
- from langchain.text_splitter import RecursiveCharacterTextSplitter
14
- from langchain.schema import Document
15
- # from langchain.embeddings import OpenAIEmbeddings
16
- #from langchain_openai import OpenAIEmbeddings
17
- from langchain_community.vectorstores import Chroma
18
- import openai
19
- from dotenv import load_dotenv
20
- import os
21
- import shutil
22
- import torch
23
-
24
- from transformers import AutoModel,AutoTokenizer
25
- model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
26
- tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
27
-
28
-
29
- # this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
30
- # this version since causes using large amount of RAm when loading falcon model)
31
- # a custom embedding
32
- #from sentence_transformers import SentenceTransformer
33
- from langchain_experimental.text_splitter import SemanticChunker
34
- from typing import List
35
- import re
36
- import warnings
37
- from typing import List
38
-
39
- import torch
40
- from langchain import PromptTemplate
41
- from langchain.chains import ConversationChain
42
- from langchain.chains.conversation.memory import ConversationBufferWindowMemory
43
- from langchain.llms import HuggingFacePipeline
44
- from langchain.schema import BaseOutputParser
45
- from transformers import (
46
- AutoModelForCausalLM,
47
- AutoTokenizer,
48
- StoppingCriteria,
49
- StoppingCriteriaList,
50
- pipeline,
51
- )
52
-
53
- warnings.filterwarnings("ignore", category=UserWarning)
54
-
55
-
56
- class MyEmbeddings:
57
- def __init__(self):
58
- #self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
59
- self.model=model2
60
-
61
- def embed_documents(self, texts: List[str]) -> List[List[float]]:
62
- inputs = tokenizer2(texts, padding=True, truncation=True, return_tensors="pt")
63
-
64
- # Get the model outputs
65
- with torch.no_grad():
66
- outputs = self.model(**inputs)
67
-
68
- # Mean pooling to get sentence embeddings
69
- embeddings = outputs.last_hidden_state.mean(dim=1)
70
- return [embeddings[i].tolist() for i, sentence in enumerate(texts)]
71
- def embed_query(self, query: str) -> List[float]:
72
- inputs = tokenizer2(query, padding=True, truncation=True, return_tensors="pt")
73
-
74
- # Get the model outputs
75
- with torch.no_grad():
76
- outputs = self.model(**inputs)
77
-
78
- # Mean pooling to get sentence embeddings
79
- embeddings = outputs.last_hidden_state.mean(dim=1)
80
- return embeddings[0].tolist()
81
-
82
-
83
- embeddings = MyEmbeddings()
84
-
85
- splitter = SemanticChunker(embeddings)
86
-
87
-
88
- CHROMA_PATH = "chroma8"
89
- # call the chroma generated in a directory
90
- db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
91
-
92
-
93
-
94
- MODEL_NAME = "gpt2"
95
-
96
- model = AutoModelForCausalLM.from_pretrained(
97
- MODEL_NAME, trust_remote_code=True, device_map="auto",offload_folder="offload",torch_dtype=torch.float16
98
- )
99
- model = model.eval()
100
-
101
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
102
- print(f"Model device: {model.device}")
103
-
104
-
105
- generation_config = model.generation_config
106
- generation_config.temperature = 0
107
- generation_config.num_return_sequences = 1
108
- generation_config.max_new_tokens = 256
109
- generation_config.use_cache = False
110
- generation_config.repetition_penalty = 1.7
111
- generation_config.pad_token_id = tokenizer.eos_token_id
112
- generation_config.eos_token_id = tokenizer.eos_token_id
113
- generation_config
114
-
115
-
116
- prompt = """
117
- The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
118
-
119
- Current conversation:
120
-
121
- Human: Who is Dwight K Schrute?
122
- AI:
123
- """.strip()
124
- input_ids = tokenizer(prompt, return_tensors="pt").input_ids
125
- input_ids = input_ids.to(model.device)
126
-
127
-
128
-
129
- class StopGenerationCriteria(StoppingCriteria):
130
- def __init__(
131
- self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
132
- ):
133
- stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
134
- self.stop_token_ids = [
135
- torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
136
- ]
137
-
138
- def __call__(
139
- self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
140
- ) -> bool:
141
- for stop_ids in self.stop_token_ids:
142
- if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
143
- return True
144
- return False
145
-
146
-
147
- stop_tokens = [["Human", ":"], ["AI", ":"]]
148
- stopping_criteria = StoppingCriteriaList(
149
- [StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
150
- )
151
-
152
- generation_pipeline = pipeline(
153
- model=model,
154
- tokenizer=tokenizer,
155
- return_full_text=True,
156
- task="text-generation",
157
- stopping_criteria=stopping_criteria,
158
- generation_config=generation_config,
159
- )
160
-
161
- llm = HuggingFacePipeline(pipeline=generation_pipeline)
162
-
163
-
164
- class CleanupOutputParser(BaseOutputParser):
165
- def parse(self, text: str) -> str:
166
- user_pattern = r"\nUser"
167
- text = re.sub(user_pattern, "", text)
168
- human_pattern = r"\nHuman:"
169
- text = re.sub(human_pattern, "", text)
170
- ai_pattern = r"\nAI:"
171
- return re.sub(ai_pattern, "", text).strip()
172
-
173
- @property
174
- def _type(self) -> str:
175
- return "output_parser"
176
-
177
-
178
- template = """
179
- The following
180
- Current conversation:
181
-
182
- {history}
183
-
184
- Human: {input}
185
- AI:""".strip()
186
- prompt = PromptTemplate(input_variables=["history", "input"], template=template)
187
-
188
- memory = ConversationBufferWindowMemory(
189
- memory_key="history", k=6, return_only_outputs=True
190
- )
191
-
192
- chain = ConversationChain(
193
- llm=llm,
194
- memory=memory,
195
- prompt=prompt,
196
- output_parser=CleanupOutputParser(),
197
- verbose=True,
198
- )
199
-
200
-
201
- from langchain.chains.conversation.memory import ConversationBufferWindowMemory
202
- def get_llama_response(message: str, history: list) -> str:
203
- query_text = message
204
-
205
- results = db.similarity_search_with_relevance_scores(query_text, k=3)
206
- if len(results) == 0 or results[0][1] < 0.5:
207
- print(f"Unable to find matching resultssssssssssssssssssssssss.")
208
-
209
-
210
- context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
211
- template = """
212
- The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
213
- Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
214
- Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
215
-
216
- Current conversation:
217
- """
218
- s="""
219
- {history}
220
- Human: {input}
221
- AI:""".strip()
222
-
223
-
224
- prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+ s)
225
-
226
- #print(template)
227
- chain.prompt=prompt
228
- print(4444444444444444444444444444444444444444444444)
229
- res = chain.invoke(query_text)
230
-
231
- print(6666666666666666666666666666666666666666666666666666666666666666666666666666666666)
232
-
233
- return(res)
234
 
235
- import gradio as gr
 
 
 
 
236
 
237
- gr.ChatInterface(get_llama_response).launch()
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
+ # Load the model and tokenizer
5
+ tokenizer = AutoTokenizer.from_pretrained("gpt2")
6
+ model = AutoModelForCausalLM.from_pretrained("gpt2")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ def generate_response(input_text):
9
+ inputs = tokenizer(input_text, return_tensors="pt")
10
+ outputs = model.generate(inputs.input_ids, max_length=50)
11
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
12
+ return response
13
 
14
+ iface = gr.Interface(fn=generate_response, inputs="text", outputs="text")
15
+ iface.launch()