File size: 3,492 Bytes
4b96563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
try:
  from langchain_community.vectorstores import Chroma
except:
  from langchain_community.vectorstores import Chroma

from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory


# Import the necessary libraries.
from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq




import os
import requests  # Or your Groq library

groq_api_key = os.environ.get("my_groq_api_key")




# Initialize a ChatGroq object with a temperature of 0 and the "mixtral-8x7b-32768" model.
llm = ChatGroq(temperature=0, model_name="llama3-70b-8192",api_key=groq_api_key)

from langchain_community.embeddings import SentenceTransformerEmbeddings

embeddings = SentenceTransformerEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"trust_remote_code":True}) 





memory = ConversationBufferWindowMemory(
    memory_key="history", k=3, return_only_outputs=True
)






query_text="what did alice say to rabbit"

# Prepare the DB.
#embedding_function = OpenAIEmbeddings() # main

CHROMA_PATH = "chroma8"
# call the chroma generated in a directory
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)

# Search the DB for similar documents to the query.
results = db.similarity_search_with_relevance_scores(query_text, k=2)
if len(results) == 0 or results[0][1] < 0.5:
    print(f"Unable to find matching results.")









from langchain import PromptTemplate
query_text = "when did alice see mad hatter"

results = db.similarity_search_with_relevance_scores(query_text, k=3)
if len(results) == 0 or results[0][1] < 0.5:
    print(f"Unable to find matching results.")


context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results ])

template = """
The following is a conversation between a human an AI. Answer  question based only on the conversation.

Current conversation:
{history}

"""



s="""

\n question: {input}

\n answer:""".strip()


prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+'\n'+s)




chain = ConversationChain(
    llm=llm,
    
    prompt=prompt,
    memory=memory,
    verbose=True,
)




# Generate a response from the Llama model
def get_llama_response(message: str, history: list) -> str:
    """
    Generates a conversational response from the Llama model.

    Parameters:
        message (str): User's input message.
        history (list): Past conversation history.

    Returns:
        str: Generated response from the Llama model.
    """
    query_text =message

    results = db.similarity_search_with_relevance_scores(query_text, k=2)
    if len(results) == 0 or results[0][1] < 0.5:
        print(f"Unable to find matching results.")


    context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results ])

    template = """
    The following is a conversation between a human an AI. Answer  question based only on the conversation.

    Current conversation:
    {history}

    """



    s="""

    \n question: {input}

    \n answer:""".strip()


    prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+'\n'+s)

    #print(template)
    chain.prompt=prompt
    res = chain.predict(input=query_text)
    return res
        #return response.strip()



import gradio as gr
iface = gr.Interface(fn=get_llama_response, inputs=gr.Textbox(),
             outputs="textbox")
iface.launch(share=True)