File size: 1,652 Bytes
19488e2
74c5a4a
be10d84
 
74c5a4a
be10d84
026c201
 
 
0b2ff15
 
be10d84
6450f47
 
 
 
026c201
be10d84
 
 
 
 
026c201
 
 
 
 
 
 
 
 
 
 
 
 
0b2ff15
 
 
6450f47
 
 
 
026c201
 
 
 
 
0b2ff15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import spaces
import gradio as gr
from transformers import AutoModel
from numpy.linalg import norm

cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model1 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-code", trust_remote_code=True)
model2 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-en", trust_remote_code=True)
model3 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-zh", trust_remote_code=True)

@spaces.GPU
def generate(input1, input2):
    if len(input1) < 1:
        input1 = "How do I access the index while iterating over a sequence with a for loop?"
    if len(input2) < 1:
        input2 = "# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n    print(idx, x)"   
    embeddings1 = model1.encode(
        [
            input1,
            input2,
        ]
    )
    embeddings2 = model2.encode(
        [
            input1,
            input2,
        ]
    )
    embeddings3 = model3.encode(
        [
            input1,
            input2,
        ]
    )
    return cos_sim(embeddings1[0], embeddings1[1]), cos_sim(embeddings2[0], embeddings2[1]), cos_sim(embeddings3[0], embeddings3[1])

gr.Interface(
    fn=generate,
    inputs=[
        gr.Text(label="input1", placeholder="How do I access the index while iterating over a sequence with a for loop?"),
        gr.Text(label="input2", placeholder="# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n    print(idx, x)"),
    ],
    outputs=[
        gr.Text(label="jina-embeddings-v2-base-code"),
        gr.Text(label="jina-embeddings-v2-base-en"),
        gr.Text(label="jina-embeddings-v2-base-zh"),
    ],
).launch()