Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- transport/__init__.py +70 -0
- transport/__pycache__/__init__.cpython-310.pyc +0 -0
- transport/__pycache__/dpm_solver.cpython-310.pyc +0 -0
- transport/__pycache__/integrators.cpython-310.pyc +0 -0
- transport/__pycache__/path.cpython-310.pyc +0 -0
- transport/__pycache__/transport.cpython-310.pyc +0 -0
- transport/__pycache__/utils.cpython-310.pyc +0 -0
- transport/dpm_solver.py +1386 -0
- transport/integrators.py +122 -0
- transport/path.py +201 -0
- transport/transport.py +490 -0
- transport/utils.py +56 -0
transport/__init__.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .transport import ModelType, PathType, Sampler, Transport, WeightType
|
2 |
+
|
3 |
+
|
4 |
+
def create_transport(
|
5 |
+
path_type="Linear",
|
6 |
+
prediction="velocity",
|
7 |
+
loss_weight=None,
|
8 |
+
train_eps=None,
|
9 |
+
sample_eps=None,
|
10 |
+
snr_type="uniform",
|
11 |
+
do_shift=True,
|
12 |
+
seq_len=1024, # corresponding to 512x512
|
13 |
+
):
|
14 |
+
"""function for creating Transport object
|
15 |
+
**Note**: model prediction defaults to velocity
|
16 |
+
Args:
|
17 |
+
- path_type: type of path to use; default to linear
|
18 |
+
- learn_score: set model prediction to score
|
19 |
+
- learn_noise: set model prediction to noise
|
20 |
+
- velocity_weighted: weight loss by velocity weight
|
21 |
+
- likelihood_weighted: weight loss by likelihood weight
|
22 |
+
- train_eps: small epsilon for avoiding instability during training
|
23 |
+
- sample_eps: small epsilon for avoiding instability during sampling
|
24 |
+
"""
|
25 |
+
|
26 |
+
if prediction == "noise":
|
27 |
+
model_type = ModelType.NOISE
|
28 |
+
elif prediction == "score":
|
29 |
+
model_type = ModelType.SCORE
|
30 |
+
else:
|
31 |
+
model_type = ModelType.VELOCITY
|
32 |
+
|
33 |
+
if loss_weight == "velocity":
|
34 |
+
loss_type = WeightType.VELOCITY
|
35 |
+
elif loss_weight == "likelihood":
|
36 |
+
loss_type = WeightType.LIKELIHOOD
|
37 |
+
else:
|
38 |
+
loss_type = WeightType.NONE
|
39 |
+
|
40 |
+
path_choice = {
|
41 |
+
"Linear": PathType.LINEAR,
|
42 |
+
"GVP": PathType.GVP,
|
43 |
+
"VP": PathType.VP,
|
44 |
+
}
|
45 |
+
|
46 |
+
path_type = path_choice[path_type]
|
47 |
+
|
48 |
+
if path_type in [PathType.VP]:
|
49 |
+
train_eps = 1e-5 if train_eps is None else train_eps
|
50 |
+
sample_eps = 1e-3 if train_eps is None else sample_eps
|
51 |
+
elif path_type in [PathType.GVP, PathType.LINEAR] and model_type != ModelType.VELOCITY:
|
52 |
+
train_eps = 1e-3 if train_eps is None else train_eps
|
53 |
+
sample_eps = 1e-3 if train_eps is None else sample_eps
|
54 |
+
else: # velocity & [GVP, LINEAR] is stable everywhere
|
55 |
+
train_eps = 0
|
56 |
+
sample_eps = 0
|
57 |
+
|
58 |
+
# create flow state
|
59 |
+
state = Transport(
|
60 |
+
model_type=model_type,
|
61 |
+
path_type=path_type,
|
62 |
+
loss_type=loss_type,
|
63 |
+
train_eps=train_eps,
|
64 |
+
sample_eps=sample_eps,
|
65 |
+
snr_type=snr_type,
|
66 |
+
do_shift=do_shift,
|
67 |
+
seq_len=seq_len,
|
68 |
+
)
|
69 |
+
|
70 |
+
return state
|
transport/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.63 kB). View file
|
|
transport/__pycache__/dpm_solver.cpython-310.pyc
ADDED
Binary file (50.9 kB). View file
|
|
transport/__pycache__/integrators.cpython-310.pyc
ADDED
Binary file (3.78 kB). View file
|
|
transport/__pycache__/path.cpython-310.pyc
ADDED
Binary file (8.35 kB). View file
|
|
transport/__pycache__/transport.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
transport/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (2.26 kB). View file
|
|
transport/dpm_solver.py
ADDED
@@ -0,0 +1,1386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# SPDX-License-Identifier: Apache-2.0
|
16 |
+
|
17 |
+
# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma
|
18 |
+
import os
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from tqdm import tqdm
|
22 |
+
|
23 |
+
|
24 |
+
class NoiseScheduleFlow:
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
schedule="discrete_flow",
|
28 |
+
):
|
29 |
+
"""Create a wrapper class for the forward SDE (EDM type)."""
|
30 |
+
self.T = 1
|
31 |
+
self.t0 = 0.001
|
32 |
+
self.schedule = schedule # ['continuous', 'discrete_flow']
|
33 |
+
self.total_N = 1000
|
34 |
+
|
35 |
+
def marginal_log_mean_coeff(self, t):
|
36 |
+
"""
|
37 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
38 |
+
"""
|
39 |
+
return torch.log(self.marginal_alpha(t))
|
40 |
+
|
41 |
+
def marginal_alpha(self, t):
|
42 |
+
"""
|
43 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
44 |
+
"""
|
45 |
+
return 1 - t
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def marginal_std(t):
|
49 |
+
"""
|
50 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
51 |
+
"""
|
52 |
+
return t
|
53 |
+
|
54 |
+
def marginal_lambda(self, t):
|
55 |
+
"""
|
56 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
57 |
+
"""
|
58 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
59 |
+
log_std = torch.log(self.marginal_std(t))
|
60 |
+
return log_mean_coeff - log_std
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def inverse_lambda(lamb):
|
64 |
+
"""
|
65 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
66 |
+
"""
|
67 |
+
return torch.exp(-lamb)
|
68 |
+
|
69 |
+
|
70 |
+
def model_wrapper(
|
71 |
+
model,
|
72 |
+
noise_schedule,
|
73 |
+
model_type="noise",
|
74 |
+
model_kwargs={},
|
75 |
+
guidance_type="uncond",
|
76 |
+
condition=None,
|
77 |
+
unconditional_condition=None,
|
78 |
+
guidance_scale=1.0,
|
79 |
+
interval_guidance=[0, 1.0],
|
80 |
+
classifier_fn=None,
|
81 |
+
classifier_kwargs={},
|
82 |
+
):
|
83 |
+
"""Create a wrapper function for the noise prediction model.
|
84 |
+
|
85 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
86 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
87 |
+
|
88 |
+
We support four types of the diffusion model by setting `model_type`:
|
89 |
+
|
90 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
91 |
+
|
92 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
93 |
+
|
94 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
95 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
96 |
+
|
97 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
98 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
99 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
100 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
101 |
+
|
102 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
103 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
104 |
+
```
|
105 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
106 |
+
```
|
107 |
+
|
108 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
109 |
+
1. "uncond": unconditional sampling by DPMs.
|
110 |
+
The input `model` has the following format:
|
111 |
+
``
|
112 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
113 |
+
``
|
114 |
+
|
115 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
116 |
+
The input `model` has the following format:
|
117 |
+
``
|
118 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
119 |
+
``
|
120 |
+
|
121 |
+
The input `classifier_fn` has the following format:
|
122 |
+
``
|
123 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
124 |
+
``
|
125 |
+
|
126 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
127 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
128 |
+
|
129 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
130 |
+
The input `model` has the following format:
|
131 |
+
``
|
132 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
133 |
+
``
|
134 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
135 |
+
|
136 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
137 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
138 |
+
|
139 |
+
|
140 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
141 |
+
or continuous-time labels (i.e. epsilon to T).
|
142 |
+
|
143 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
144 |
+
``
|
145 |
+
def model_fn(x, t_continuous) -> noise:
|
146 |
+
t_input = get_model_input_time(t_continuous)
|
147 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
148 |
+
``
|
149 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
150 |
+
|
151 |
+
===============================================================
|
152 |
+
|
153 |
+
Args:
|
154 |
+
model: A diffusion model with the corresponding format described above.
|
155 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
156 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
157 |
+
"noise" or "x_start" or "v" or "score".
|
158 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
159 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
160 |
+
"uncond" or "classifier" or "classifier-free".
|
161 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
162 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
163 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
164 |
+
Only used for "classifier-free" guidance type.
|
165 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
166 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
167 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
168 |
+
Returns:
|
169 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
170 |
+
"""
|
171 |
+
|
172 |
+
def get_model_input_time(t_continuous):
|
173 |
+
"""
|
174 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
175 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
176 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
177 |
+
"""
|
178 |
+
if noise_schedule.schedule == "discrete":
|
179 |
+
return (t_continuous - 1.0 / noise_schedule.total_N) * noise_schedule.total_N
|
180 |
+
elif noise_schedule.schedule == "discrete_flow":
|
181 |
+
return t_continuous * noise_schedule.total_N
|
182 |
+
else:
|
183 |
+
return t_continuous
|
184 |
+
|
185 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
186 |
+
t_input = get_model_input_time(t_continuous)
|
187 |
+
if cond is None:
|
188 |
+
output = model(x, t_input, **model_kwargs)
|
189 |
+
else:
|
190 |
+
output = model(x, t_input, cond, **model_kwargs)
|
191 |
+
if model_type == "noise":
|
192 |
+
return output
|
193 |
+
elif model_type == "x_start":
|
194 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
195 |
+
return (x - expand_dims(alpha_t, x.dim()) * output) / expand_dims(sigma_t, x.dim())
|
196 |
+
elif model_type == "v":
|
197 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
198 |
+
return expand_dims(alpha_t, x.dim()) * output + expand_dims(sigma_t, x.dim()) * x
|
199 |
+
elif model_type == "score":
|
200 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
201 |
+
return -expand_dims(sigma_t, x.dim()) * output
|
202 |
+
elif model_type == "flow":
|
203 |
+
_, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
204 |
+
try:
|
205 |
+
noise = (1 - expand_dims(sigma_t, x.dim()).to(x)) * output + x
|
206 |
+
except:
|
207 |
+
noise = (1 - expand_dims(sigma_t, x.dim()).to(x)) * output[0] + x
|
208 |
+
return noise
|
209 |
+
|
210 |
+
def cond_grad_fn(x, t_input):
|
211 |
+
"""
|
212 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
213 |
+
"""
|
214 |
+
with torch.enable_grad():
|
215 |
+
x_in = x.detach().requires_grad_(True)
|
216 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
217 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
218 |
+
|
219 |
+
def model_fn(x, t_continuous):
|
220 |
+
"""
|
221 |
+
The noise predicition model function that is used for DPM-Solver.
|
222 |
+
"""
|
223 |
+
guidance_tp = guidance_type
|
224 |
+
if guidance_tp == "uncond":
|
225 |
+
return noise_pred_fn(x, t_continuous)
|
226 |
+
elif guidance_tp == "classifier":
|
227 |
+
assert classifier_fn is not None
|
228 |
+
t_input = get_model_input_time(t_continuous)
|
229 |
+
cond_grad = cond_grad_fn(x, t_input)
|
230 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
231 |
+
noise = noise_pred_fn(x, t_continuous)
|
232 |
+
return noise - guidance_scale * expand_dims(sigma_t, x.dim()) * cond_grad
|
233 |
+
elif guidance_tp == "classifier-free":
|
234 |
+
if (
|
235 |
+
guidance_scale == 1.0
|
236 |
+
or unconditional_condition is None
|
237 |
+
or not (interval_guidance[0] < t_continuous[0] < interval_guidance[1])
|
238 |
+
):
|
239 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
240 |
+
else:
|
241 |
+
x_in = torch.cat([x] * 2)
|
242 |
+
t_in = torch.cat([t_continuous] * 2)
|
243 |
+
c_in = torch.cat([unconditional_condition, condition])
|
244 |
+
try:
|
245 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
246 |
+
except:
|
247 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in)[0].chunk(2)
|
248 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
249 |
+
|
250 |
+
assert model_type in ["noise", "x_start", "v", "score", "flow"]
|
251 |
+
assert guidance_type in [
|
252 |
+
"uncond",
|
253 |
+
"classifier",
|
254 |
+
"classifier-free",
|
255 |
+
]
|
256 |
+
return model_fn
|
257 |
+
|
258 |
+
|
259 |
+
class DPM_Solver:
|
260 |
+
def __init__(
|
261 |
+
self,
|
262 |
+
model_fn,
|
263 |
+
noise_schedule,
|
264 |
+
algorithm_type="dpmsolver++",
|
265 |
+
correcting_x0_fn=None,
|
266 |
+
correcting_xt_fn=None,
|
267 |
+
thresholding_max_val=1.0,
|
268 |
+
dynamic_thresholding_ratio=0.995,
|
269 |
+
):
|
270 |
+
"""Construct a DPM-Solver.
|
271 |
+
|
272 |
+
We support both DPM-Solver (`algorithm_type="dpmsolver"`) and DPM-Solver++ (`algorithm_type="dpmsolver++"`).
|
273 |
+
|
274 |
+
We also support the "dynamic thresholding" method in Imagen[1]. For pixel-space diffusion models, you
|
275 |
+
can set both `algorithm_type="dpmsolver++"` and `correcting_x0_fn="dynamic_thresholding"` to use the
|
276 |
+
dynamic thresholding. The "dynamic thresholding" can greatly improve the sample quality for pixel-space
|
277 |
+
DPMs with large guidance scales. Note that the thresholding method is **unsuitable** for latent-space
|
278 |
+
DPMs (such as stable-diffusion).
|
279 |
+
|
280 |
+
To support advanced algorithms in image-to-image applications, we also support corrector functions for
|
281 |
+
both x0 and xt.
|
282 |
+
|
283 |
+
Args:
|
284 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
285 |
+
``
|
286 |
+
def model_fn(x, t_continuous):
|
287 |
+
return noise
|
288 |
+
``
|
289 |
+
The shape of `x` is `(batch_size, **shape)`, and the shape of `t_continuous` is `(batch_size,)`.
|
290 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
291 |
+
algorithm_type: A `str`. Either "dpmsolver" or "dpmsolver++".
|
292 |
+
correcting_x0_fn: A `str` or a function with the following format:
|
293 |
+
```
|
294 |
+
def correcting_x0_fn(x0, t):
|
295 |
+
x0_new = ...
|
296 |
+
return x0_new
|
297 |
+
```
|
298 |
+
This function is to correct the outputs of the data prediction model at each sampling step. e.g.,
|
299 |
+
```
|
300 |
+
x0_pred = data_pred_model(xt, t)
|
301 |
+
if correcting_x0_fn is not None:
|
302 |
+
x0_pred = correcting_x0_fn(x0_pred, t)
|
303 |
+
xt_1 = update(x0_pred, xt, t)
|
304 |
+
```
|
305 |
+
If `correcting_x0_fn="dynamic_thresholding"`, we use the dynamic thresholding proposed in Imagen[1].
|
306 |
+
correcting_xt_fn: A function with the following format:
|
307 |
+
```
|
308 |
+
def correcting_xt_fn(xt, t, step):
|
309 |
+
x_new = ...
|
310 |
+
return x_new
|
311 |
+
```
|
312 |
+
This function is to correct the intermediate samples xt at each sampling step. e.g.,
|
313 |
+
```
|
314 |
+
xt = ...
|
315 |
+
xt = correcting_xt_fn(xt, t, step)
|
316 |
+
```
|
317 |
+
thresholding_max_val: A `float`. The max value for thresholding.
|
318 |
+
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
|
319 |
+
dynamic_thresholding_ratio: A `float`. The ratio for dynamic thresholding (see Imagen[1] for details).
|
320 |
+
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
|
321 |
+
|
322 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
|
323 |
+
Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models
|
324 |
+
with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
325 |
+
"""
|
326 |
+
self.model = lambda x, t: model_fn(x, t.expand(x.shape[0]))
|
327 |
+
self.noise_schedule = noise_schedule
|
328 |
+
assert algorithm_type in ["dpmsolver", "dpmsolver++"]
|
329 |
+
self.algorithm_type = algorithm_type
|
330 |
+
if correcting_x0_fn == "dynamic_thresholding":
|
331 |
+
self.correcting_x0_fn = self.dynamic_thresholding_fn
|
332 |
+
else:
|
333 |
+
self.correcting_x0_fn = correcting_x0_fn
|
334 |
+
self.correcting_xt_fn = correcting_xt_fn
|
335 |
+
self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
|
336 |
+
self.thresholding_max_val = thresholding_max_val
|
337 |
+
self.register_progress_bar()
|
338 |
+
|
339 |
+
def register_progress_bar(self, progress_fn=None):
|
340 |
+
"""
|
341 |
+
Register a progress bar callback function
|
342 |
+
|
343 |
+
Args:
|
344 |
+
progress_fn: Callback function that takes current step and total steps as parameters
|
345 |
+
"""
|
346 |
+
self.progress_fn = progress_fn if progress_fn is not None else lambda step, total: None
|
347 |
+
|
348 |
+
def update_progress(self, step, total_steps):
|
349 |
+
"""
|
350 |
+
Update sampling progress
|
351 |
+
|
352 |
+
Args:
|
353 |
+
step: Current step number
|
354 |
+
total_steps: Total number of steps
|
355 |
+
"""
|
356 |
+
if hasattr(self, "progress_fn"):
|
357 |
+
try:
|
358 |
+
self.progress_fn(step / total_steps, desc=f"Generating {step}/{total_steps}")
|
359 |
+
except:
|
360 |
+
self.progress_fn(step, total_steps)
|
361 |
+
|
362 |
+
else:
|
363 |
+
# If no progress_fn registered, use default empty function
|
364 |
+
pass
|
365 |
+
|
366 |
+
def dynamic_thresholding_fn(self, x0, t):
|
367 |
+
"""
|
368 |
+
The dynamic thresholding method.
|
369 |
+
"""
|
370 |
+
dims = x0.dim()
|
371 |
+
p = self.dynamic_thresholding_ratio
|
372 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
373 |
+
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
|
374 |
+
x0 = torch.clamp(x0, -s, s) / s
|
375 |
+
return x0
|
376 |
+
|
377 |
+
def noise_prediction_fn(self, x, t):
|
378 |
+
"""
|
379 |
+
Return the noise prediction model.
|
380 |
+
"""
|
381 |
+
return self.model(x, t)
|
382 |
+
|
383 |
+
def data_prediction_fn(self, x, t):
|
384 |
+
"""
|
385 |
+
Return the data prediction model (with corrector).
|
386 |
+
"""
|
387 |
+
noise = self.noise_prediction_fn(x, t)
|
388 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
389 |
+
x0 = (x - sigma_t * noise) / alpha_t
|
390 |
+
if self.correcting_x0_fn is not None:
|
391 |
+
x0 = self.correcting_x0_fn(x0, t)
|
392 |
+
return x0
|
393 |
+
|
394 |
+
def model_fn(self, x, t):
|
395 |
+
"""
|
396 |
+
Convert the model to the noise prediction model or the data prediction model.
|
397 |
+
"""
|
398 |
+
if self.algorithm_type == "dpmsolver++":
|
399 |
+
return self.data_prediction_fn(x, t)
|
400 |
+
else:
|
401 |
+
return self.noise_prediction_fn(x, t)
|
402 |
+
|
403 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device, shift=1.0):
|
404 |
+
"""Compute the intermediate time steps for sampling.
|
405 |
+
|
406 |
+
Args:
|
407 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
408 |
+
- 'logSNR': uniform logSNR for the time steps.
|
409 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
410 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
411 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
412 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
413 |
+
N: A `int`. The total number of the spacing of the time steps.
|
414 |
+
device: A torch device.
|
415 |
+
Returns:
|
416 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
417 |
+
"""
|
418 |
+
if skip_type == "logSNR":
|
419 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
420 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
421 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
422 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
423 |
+
elif skip_type == "time_uniform":
|
424 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
425 |
+
elif skip_type == "time_quadratic":
|
426 |
+
t_order = 2
|
427 |
+
t = torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device)
|
428 |
+
return t
|
429 |
+
elif skip_type == "time_uniform_flow":
|
430 |
+
betas = torch.linspace(t_T, t_0, N + 1).to(device)
|
431 |
+
sigmas = 1.0 - betas
|
432 |
+
sigmas = (shift * sigmas / (1 + (shift - 1) * sigmas)).flip(dims=[0])
|
433 |
+
return sigmas
|
434 |
+
else:
|
435 |
+
raise ValueError(
|
436 |
+
f"Unsupported skip_type {skip_type}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'"
|
437 |
+
)
|
438 |
+
|
439 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
440 |
+
"""
|
441 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
442 |
+
|
443 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
444 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
445 |
+
- If order == 1:
|
446 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
447 |
+
- If order == 2:
|
448 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
449 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
450 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
451 |
+
- If order == 3:
|
452 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
453 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
454 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
455 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
456 |
+
|
457 |
+
============================================
|
458 |
+
Args:
|
459 |
+
order: A `int`. The max order for the solver (2 or 3).
|
460 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
461 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
462 |
+
- 'logSNR': uniform logSNR for the time steps.
|
463 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
464 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
465 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
466 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
467 |
+
device: A torch device.
|
468 |
+
Returns:
|
469 |
+
orders: A list of the solver order of each step.
|
470 |
+
"""
|
471 |
+
if order == 3:
|
472 |
+
K = steps // 3 + 1
|
473 |
+
if steps % 3 == 0:
|
474 |
+
orders = [3,] * (
|
475 |
+
K - 2
|
476 |
+
) + [2, 1]
|
477 |
+
elif steps % 3 == 1:
|
478 |
+
orders = [3,] * (
|
479 |
+
K - 1
|
480 |
+
) + [1]
|
481 |
+
else:
|
482 |
+
orders = [3,] * (
|
483 |
+
K - 1
|
484 |
+
) + [2]
|
485 |
+
elif order == 2:
|
486 |
+
if steps % 2 == 0:
|
487 |
+
K = steps // 2
|
488 |
+
orders = [
|
489 |
+
2,
|
490 |
+
] * K
|
491 |
+
else:
|
492 |
+
K = steps // 2 + 1
|
493 |
+
orders = [2,] * (
|
494 |
+
K - 1
|
495 |
+
) + [1]
|
496 |
+
elif order == 1:
|
497 |
+
K = 1
|
498 |
+
orders = [
|
499 |
+
1,
|
500 |
+
] * steps
|
501 |
+
else:
|
502 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
503 |
+
if skip_type == "logSNR":
|
504 |
+
# To reproduce the results in DPM-Solver paper
|
505 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
506 |
+
else:
|
507 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
|
508 |
+
torch.cumsum(
|
509 |
+
torch.tensor(
|
510 |
+
[
|
511 |
+
0,
|
512 |
+
]
|
513 |
+
+ orders
|
514 |
+
),
|
515 |
+
0,
|
516 |
+
).to(device)
|
517 |
+
]
|
518 |
+
return timesteps_outer, orders
|
519 |
+
|
520 |
+
def denoise_to_zero_fn(self, x, s):
|
521 |
+
"""
|
522 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
523 |
+
"""
|
524 |
+
return self.data_prediction_fn(x, s)
|
525 |
+
|
526 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
527 |
+
"""
|
528 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
529 |
+
|
530 |
+
Args:
|
531 |
+
x: A pytorch tensor. The initial value at time `s`.
|
532 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
533 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
534 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
535 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
536 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
537 |
+
Returns:
|
538 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
539 |
+
"""
|
540 |
+
ns = self.noise_schedule
|
541 |
+
dims = x.dim()
|
542 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
543 |
+
h = lambda_t - lambda_s
|
544 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
545 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
546 |
+
alpha_t = torch.exp(log_alpha_t)
|
547 |
+
|
548 |
+
if self.algorithm_type == "dpmsolver++":
|
549 |
+
phi_1 = torch.expm1(-h)
|
550 |
+
if model_s is None:
|
551 |
+
model_s = self.model_fn(x, s)
|
552 |
+
x_t = sigma_t / sigma_s * x - alpha_t * phi_1 * model_s
|
553 |
+
if return_intermediate:
|
554 |
+
return x_t, {"model_s": model_s}
|
555 |
+
else:
|
556 |
+
return x_t
|
557 |
+
else:
|
558 |
+
phi_1 = torch.expm1(h)
|
559 |
+
if model_s is None:
|
560 |
+
model_s = self.model_fn(x, s)
|
561 |
+
x_t = torch.exp(log_alpha_t - log_alpha_s) * x - (sigma_t * phi_1) * model_s
|
562 |
+
if return_intermediate:
|
563 |
+
return x_t, {"model_s": model_s}
|
564 |
+
else:
|
565 |
+
return x_t
|
566 |
+
|
567 |
+
def singlestep_dpm_solver_second_update(
|
568 |
+
self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type="dpmsolver"
|
569 |
+
):
|
570 |
+
"""
|
571 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
572 |
+
|
573 |
+
Args:
|
574 |
+
x: A pytorch tensor. The initial value at time `s`.
|
575 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
576 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
577 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
578 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
579 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
580 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
581 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
582 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
583 |
+
Returns:
|
584 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
585 |
+
"""
|
586 |
+
if solver_type not in ["dpmsolver", "taylor"]:
|
587 |
+
raise ValueError(f"'solver_type' must be either 'dpmsolver' or 'taylor', got {solver_type}")
|
588 |
+
if r1 is None:
|
589 |
+
r1 = 0.5
|
590 |
+
ns = self.noise_schedule
|
591 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
592 |
+
h = lambda_t - lambda_s
|
593 |
+
lambda_s1 = lambda_s + r1 * h
|
594 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
595 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = (
|
596 |
+
ns.marginal_log_mean_coeff(s),
|
597 |
+
ns.marginal_log_mean_coeff(s1),
|
598 |
+
ns.marginal_log_mean_coeff(t),
|
599 |
+
)
|
600 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
601 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
602 |
+
|
603 |
+
if self.algorithm_type == "dpmsolver++":
|
604 |
+
phi_11 = torch.expm1(-r1 * h)
|
605 |
+
phi_1 = torch.expm1(-h)
|
606 |
+
|
607 |
+
if model_s is None:
|
608 |
+
model_s = self.model_fn(x, s)
|
609 |
+
x_s1 = (sigma_s1 / sigma_s) * x - (alpha_s1 * phi_11) * model_s
|
610 |
+
model_s1 = self.model_fn(x_s1, s1)
|
611 |
+
if solver_type == "dpmsolver":
|
612 |
+
x_t = (
|
613 |
+
(sigma_t / sigma_s) * x
|
614 |
+
- (alpha_t * phi_1) * model_s
|
615 |
+
- (0.5 / r1) * (alpha_t * phi_1) * (model_s1 - model_s)
|
616 |
+
)
|
617 |
+
elif solver_type == "taylor":
|
618 |
+
x_t = (
|
619 |
+
(sigma_t / sigma_s) * x
|
620 |
+
- (alpha_t * phi_1) * model_s
|
621 |
+
+ (1.0 / r1) * (alpha_t * (phi_1 / h + 1.0)) * (model_s1 - model_s)
|
622 |
+
)
|
623 |
+
else:
|
624 |
+
phi_11 = torch.expm1(r1 * h)
|
625 |
+
phi_1 = torch.expm1(h)
|
626 |
+
|
627 |
+
if model_s is None:
|
628 |
+
model_s = self.model_fn(x, s)
|
629 |
+
x_s1 = torch.exp(log_alpha_s1 - log_alpha_s) * x - (sigma_s1 * phi_11) * model_s
|
630 |
+
model_s1 = self.model_fn(x_s1, s1)
|
631 |
+
if solver_type == "dpmsolver":
|
632 |
+
x_t = (
|
633 |
+
torch.exp(log_alpha_t - log_alpha_s) * x
|
634 |
+
- (sigma_t * phi_1) * model_s
|
635 |
+
- (0.5 / r1) * (sigma_t * phi_1) * (model_s1 - model_s)
|
636 |
+
)
|
637 |
+
elif solver_type == "taylor":
|
638 |
+
x_t = (
|
639 |
+
torch.exp(log_alpha_t - log_alpha_s) * x
|
640 |
+
- (sigma_t * phi_1) * model_s
|
641 |
+
- (1.0 / r1) * (sigma_t * (phi_1 / h - 1.0)) * (model_s1 - model_s)
|
642 |
+
)
|
643 |
+
if return_intermediate:
|
644 |
+
return x_t, {"model_s": model_s, "model_s1": model_s1}
|
645 |
+
else:
|
646 |
+
return x_t
|
647 |
+
|
648 |
+
def singlestep_dpm_solver_third_update(
|
649 |
+
self,
|
650 |
+
x,
|
651 |
+
s,
|
652 |
+
t,
|
653 |
+
r1=1.0 / 3.0,
|
654 |
+
r2=2.0 / 3.0,
|
655 |
+
model_s=None,
|
656 |
+
model_s1=None,
|
657 |
+
return_intermediate=False,
|
658 |
+
solver_type="dpmsolver",
|
659 |
+
):
|
660 |
+
"""
|
661 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
662 |
+
|
663 |
+
Args:
|
664 |
+
x: A pytorch tensor. The initial value at time `s`.
|
665 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
666 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
667 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
668 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
669 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
670 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
671 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
672 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
673 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
674 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
675 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
676 |
+
Returns:
|
677 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
678 |
+
"""
|
679 |
+
if solver_type not in ["dpmsolver", "taylor"]:
|
680 |
+
raise ValueError(f"'solver_type' must be either 'dpmsolver' or 'taylor', got {solver_type}")
|
681 |
+
if r1 is None:
|
682 |
+
r1 = 1.0 / 3.0
|
683 |
+
if r2 is None:
|
684 |
+
r2 = 2.0 / 3.0
|
685 |
+
ns = self.noise_schedule
|
686 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
687 |
+
h = lambda_t - lambda_s
|
688 |
+
lambda_s1 = lambda_s + r1 * h
|
689 |
+
lambda_s2 = lambda_s + r2 * h
|
690 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
691 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
692 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = (
|
693 |
+
ns.marginal_log_mean_coeff(s),
|
694 |
+
ns.marginal_log_mean_coeff(s1),
|
695 |
+
ns.marginal_log_mean_coeff(s2),
|
696 |
+
ns.marginal_log_mean_coeff(t),
|
697 |
+
)
|
698 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = (
|
699 |
+
ns.marginal_std(s),
|
700 |
+
ns.marginal_std(s1),
|
701 |
+
ns.marginal_std(s2),
|
702 |
+
ns.marginal_std(t),
|
703 |
+
)
|
704 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
705 |
+
|
706 |
+
if self.algorithm_type == "dpmsolver++":
|
707 |
+
phi_11 = torch.expm1(-r1 * h)
|
708 |
+
phi_12 = torch.expm1(-r2 * h)
|
709 |
+
phi_1 = torch.expm1(-h)
|
710 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.0
|
711 |
+
phi_2 = phi_1 / h + 1.0
|
712 |
+
phi_3 = phi_2 / h - 0.5
|
713 |
+
|
714 |
+
if model_s is None:
|
715 |
+
model_s = self.model_fn(x, s)
|
716 |
+
if model_s1 is None:
|
717 |
+
x_s1 = (sigma_s1 / sigma_s) * x - (alpha_s1 * phi_11) * model_s
|
718 |
+
model_s1 = self.model_fn(x_s1, s1)
|
719 |
+
x_s2 = (
|
720 |
+
(sigma_s2 / sigma_s) * x
|
721 |
+
- (alpha_s2 * phi_12) * model_s
|
722 |
+
+ r2 / r1 * (alpha_s2 * phi_22) * (model_s1 - model_s)
|
723 |
+
)
|
724 |
+
model_s2 = self.model_fn(x_s2, s2)
|
725 |
+
if solver_type == "dpmsolver":
|
726 |
+
x_t = (
|
727 |
+
(sigma_t / sigma_s) * x
|
728 |
+
- (alpha_t * phi_1) * model_s
|
729 |
+
+ (1.0 / r2) * (alpha_t * phi_2) * (model_s2 - model_s)
|
730 |
+
)
|
731 |
+
elif solver_type == "taylor":
|
732 |
+
D1_0 = (1.0 / r1) * (model_s1 - model_s)
|
733 |
+
D1_1 = (1.0 / r2) * (model_s2 - model_s)
|
734 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
735 |
+
D2 = 2.0 * (D1_1 - D1_0) / (r2 - r1)
|
736 |
+
x_t = (
|
737 |
+
(sigma_t / sigma_s) * x
|
738 |
+
- (alpha_t * phi_1) * model_s
|
739 |
+
+ (alpha_t * phi_2) * D1
|
740 |
+
- (alpha_t * phi_3) * D2
|
741 |
+
)
|
742 |
+
else:
|
743 |
+
phi_11 = torch.expm1(r1 * h)
|
744 |
+
phi_12 = torch.expm1(r2 * h)
|
745 |
+
phi_1 = torch.expm1(h)
|
746 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.0
|
747 |
+
phi_2 = phi_1 / h - 1.0
|
748 |
+
phi_3 = phi_2 / h - 0.5
|
749 |
+
|
750 |
+
if model_s is None:
|
751 |
+
model_s = self.model_fn(x, s)
|
752 |
+
if model_s1 is None:
|
753 |
+
x_s1 = (torch.exp(log_alpha_s1 - log_alpha_s)) * x - (sigma_s1 * phi_11) * model_s
|
754 |
+
model_s1 = self.model_fn(x_s1, s1)
|
755 |
+
x_s2 = (
|
756 |
+
(torch.exp(log_alpha_s2 - log_alpha_s)) * x
|
757 |
+
- (sigma_s2 * phi_12) * model_s
|
758 |
+
- r2 / r1 * (sigma_s2 * phi_22) * (model_s1 - model_s)
|
759 |
+
)
|
760 |
+
model_s2 = self.model_fn(x_s2, s2)
|
761 |
+
if solver_type == "dpmsolver":
|
762 |
+
x_t = (
|
763 |
+
(torch.exp(log_alpha_t - log_alpha_s)) * x
|
764 |
+
- (sigma_t * phi_1) * model_s
|
765 |
+
- (1.0 / r2) * (sigma_t * phi_2) * (model_s2 - model_s)
|
766 |
+
)
|
767 |
+
elif solver_type == "taylor":
|
768 |
+
D1_0 = (1.0 / r1) * (model_s1 - model_s)
|
769 |
+
D1_1 = (1.0 / r2) * (model_s2 - model_s)
|
770 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
771 |
+
D2 = 2.0 * (D1_1 - D1_0) / (r2 - r1)
|
772 |
+
x_t = (
|
773 |
+
(torch.exp(log_alpha_t - log_alpha_s)) * x
|
774 |
+
- (sigma_t * phi_1) * model_s
|
775 |
+
- (sigma_t * phi_2) * D1
|
776 |
+
- (sigma_t * phi_3) * D2
|
777 |
+
)
|
778 |
+
|
779 |
+
if return_intermediate:
|
780 |
+
return x_t, {"model_s": model_s, "model_s1": model_s1, "model_s2": model_s2}
|
781 |
+
else:
|
782 |
+
return x_t
|
783 |
+
|
784 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"):
|
785 |
+
"""
|
786 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
787 |
+
|
788 |
+
Args:
|
789 |
+
x: A pytorch tensor. The initial value at time `s`.
|
790 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
791 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
792 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
793 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
794 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
795 |
+
Returns:
|
796 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
797 |
+
"""
|
798 |
+
if solver_type not in ["dpmsolver", "taylor"]:
|
799 |
+
raise ValueError(f"'solver_type' must be either 'dpmsolver' or 'taylor', got {solver_type}")
|
800 |
+
ns = self.noise_schedule
|
801 |
+
model_prev_1, model_prev_0 = model_prev_list[-2], model_prev_list[-1]
|
802 |
+
t_prev_1, t_prev_0 = t_prev_list[-2], t_prev_list[-1]
|
803 |
+
lambda_prev_1, lambda_prev_0, lambda_t = (
|
804 |
+
ns.marginal_lambda(t_prev_1),
|
805 |
+
ns.marginal_lambda(t_prev_0),
|
806 |
+
ns.marginal_lambda(t),
|
807 |
+
)
|
808 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
809 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
810 |
+
alpha_t = torch.exp(log_alpha_t)
|
811 |
+
|
812 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
813 |
+
h = lambda_t - lambda_prev_0
|
814 |
+
r0 = h_0 / h
|
815 |
+
D1_0 = (1.0 / r0) * (model_prev_0 - model_prev_1)
|
816 |
+
if self.algorithm_type == "dpmsolver++":
|
817 |
+
phi_1 = torch.expm1(-h)
|
818 |
+
if solver_type == "dpmsolver":
|
819 |
+
x_t = (sigma_t / sigma_prev_0) * x - (alpha_t * phi_1) * model_prev_0 - 0.5 * (alpha_t * phi_1) * D1_0
|
820 |
+
elif solver_type == "taylor":
|
821 |
+
x_t = (
|
822 |
+
(sigma_t / sigma_prev_0) * x
|
823 |
+
- (alpha_t * phi_1) * model_prev_0
|
824 |
+
+ (alpha_t * (phi_1 / h + 1.0)) * D1_0
|
825 |
+
)
|
826 |
+
else:
|
827 |
+
phi_1 = torch.expm1(h)
|
828 |
+
if solver_type == "dpmsolver":
|
829 |
+
x_t = (
|
830 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
831 |
+
- (sigma_t * phi_1) * model_prev_0
|
832 |
+
- 0.5 * (sigma_t * phi_1) * D1_0
|
833 |
+
)
|
834 |
+
elif solver_type == "taylor":
|
835 |
+
x_t = (
|
836 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
837 |
+
- (sigma_t * phi_1) * model_prev_0
|
838 |
+
- (sigma_t * (phi_1 / h - 1.0)) * D1_0
|
839 |
+
)
|
840 |
+
return x_t
|
841 |
+
|
842 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"):
|
843 |
+
"""
|
844 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
845 |
+
|
846 |
+
Args:
|
847 |
+
x: A pytorch tensor. The initial value at time `s`.
|
848 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
849 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
850 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
851 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
852 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
853 |
+
Returns:
|
854 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
855 |
+
"""
|
856 |
+
ns = self.noise_schedule
|
857 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
858 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
859 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = (
|
860 |
+
ns.marginal_lambda(t_prev_2),
|
861 |
+
ns.marginal_lambda(t_prev_1),
|
862 |
+
ns.marginal_lambda(t_prev_0),
|
863 |
+
ns.marginal_lambda(t),
|
864 |
+
)
|
865 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
866 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
867 |
+
alpha_t = torch.exp(log_alpha_t)
|
868 |
+
|
869 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
870 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
871 |
+
h = lambda_t - lambda_prev_0
|
872 |
+
r0, r1 = h_0 / h, h_1 / h
|
873 |
+
D1_0 = (1.0 / r0) * (model_prev_0 - model_prev_1)
|
874 |
+
D1_1 = (1.0 / r1) * (model_prev_1 - model_prev_2)
|
875 |
+
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
|
876 |
+
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
|
877 |
+
if self.algorithm_type == "dpmsolver++":
|
878 |
+
phi_1 = torch.expm1(-h)
|
879 |
+
phi_2 = phi_1 / h + 1.0
|
880 |
+
phi_3 = phi_2 / h - 0.5
|
881 |
+
x_t = (
|
882 |
+
(sigma_t / sigma_prev_0) * x
|
883 |
+
- (alpha_t * phi_1) * model_prev_0
|
884 |
+
+ (alpha_t * phi_2) * D1
|
885 |
+
- (alpha_t * phi_3) * D2
|
886 |
+
)
|
887 |
+
else:
|
888 |
+
phi_1 = torch.expm1(h)
|
889 |
+
phi_2 = phi_1 / h - 1.0
|
890 |
+
phi_3 = phi_2 / h - 0.5
|
891 |
+
x_t = (
|
892 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
893 |
+
- (sigma_t * phi_1) * model_prev_0
|
894 |
+
- (sigma_t * phi_2) * D1
|
895 |
+
- (sigma_t * phi_3) * D2
|
896 |
+
)
|
897 |
+
return x_t
|
898 |
+
|
899 |
+
def singlestep_dpm_solver_update(
|
900 |
+
self, x, s, t, order, return_intermediate=False, solver_type="dpmsolver", r1=None, r2=None
|
901 |
+
):
|
902 |
+
"""
|
903 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
904 |
+
|
905 |
+
Args:
|
906 |
+
x: A pytorch tensor. The initial value at time `s`.
|
907 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
908 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
909 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
910 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
911 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
912 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
913 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
914 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
915 |
+
Returns:
|
916 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
917 |
+
"""
|
918 |
+
if order == 1:
|
919 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
920 |
+
elif order == 2:
|
921 |
+
return self.singlestep_dpm_solver_second_update(
|
922 |
+
x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1
|
923 |
+
)
|
924 |
+
elif order == 3:
|
925 |
+
return self.singlestep_dpm_solver_third_update(
|
926 |
+
x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2
|
927 |
+
)
|
928 |
+
else:
|
929 |
+
raise ValueError(f"Solver order must be 1 or 2 or 3, got {order}")
|
930 |
+
|
931 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type="dpmsolver"):
|
932 |
+
"""
|
933 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
934 |
+
|
935 |
+
Args:
|
936 |
+
x: A pytorch tensor. The initial value at time `s`.
|
937 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
938 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
939 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
940 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
941 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
942 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
943 |
+
Returns:
|
944 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
945 |
+
"""
|
946 |
+
if order == 1:
|
947 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
948 |
+
elif order == 2:
|
949 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
950 |
+
elif order == 3:
|
951 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
952 |
+
else:
|
953 |
+
raise ValueError(f"Solver order must be 1 or 2 or 3, got {order}")
|
954 |
+
|
955 |
+
def dpm_solver_adaptive(
|
956 |
+
self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type="dpmsolver"
|
957 |
+
):
|
958 |
+
"""
|
959 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
960 |
+
|
961 |
+
Args:
|
962 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
963 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
964 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
965 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
966 |
+
h_init: A `float`. The initial step size (for logSNR).
|
967 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
968 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
969 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
970 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
971 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
972 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
973 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
974 |
+
Returns:
|
975 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
976 |
+
|
977 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
978 |
+
"""
|
979 |
+
ns = self.noise_schedule
|
980 |
+
s = t_T * torch.ones((1,)).to(x)
|
981 |
+
lambda_s = ns.marginal_lambda(s)
|
982 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
983 |
+
h = h_init * torch.ones_like(s).to(x)
|
984 |
+
x_prev = x
|
985 |
+
nfe = 0
|
986 |
+
if order == 2:
|
987 |
+
r1 = 0.5
|
988 |
+
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
989 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(
|
990 |
+
x, s, t, r1=r1, solver_type=solver_type, **kwargs
|
991 |
+
)
|
992 |
+
elif order == 3:
|
993 |
+
r1, r2 = 1.0 / 3.0, 2.0 / 3.0
|
994 |
+
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(
|
995 |
+
x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type
|
996 |
+
)
|
997 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(
|
998 |
+
x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs
|
999 |
+
)
|
1000 |
+
else:
|
1001 |
+
raise ValueError(f"For adaptive step size solver, order must be 2 or 3, got {order}")
|
1002 |
+
while torch.abs(s - t_0).mean() > t_err:
|
1003 |
+
t = ns.inverse_lambda(lambda_s + h)
|
1004 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
1005 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
1006 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
1007 |
+
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
1008 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
1009 |
+
if torch.all(E <= 1.0):
|
1010 |
+
x = x_higher
|
1011 |
+
s = t
|
1012 |
+
x_prev = x_lower
|
1013 |
+
lambda_s = ns.marginal_lambda(s)
|
1014 |
+
h = torch.min(theta * h * torch.float_power(E, -1.0 / order).float(), lambda_0 - lambda_s)
|
1015 |
+
nfe += order
|
1016 |
+
print("adaptive solver nfe", nfe)
|
1017 |
+
return x
|
1018 |
+
|
1019 |
+
def add_noise(self, x, t, noise=None):
|
1020 |
+
"""
|
1021 |
+
Compute the noised input xt = alpha_t * x + sigma_t * noise.
|
1022 |
+
|
1023 |
+
Args:
|
1024 |
+
x: A `torch.Tensor` with shape `(batch_size, *shape)`.
|
1025 |
+
t: A `torch.Tensor` with shape `(t_size,)`.
|
1026 |
+
Returns:
|
1027 |
+
xt with shape `(t_size, batch_size, *shape)`.
|
1028 |
+
"""
|
1029 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
1030 |
+
if noise is None:
|
1031 |
+
noise = torch.randn((t.shape[0], *x.shape), device=x.device)
|
1032 |
+
x = x.reshape((-1, *x.shape))
|
1033 |
+
xt = expand_dims(alpha_t, x.dim()) * x + expand_dims(sigma_t, x.dim()) * noise
|
1034 |
+
if t.shape[0] == 1:
|
1035 |
+
return xt.squeeze(0)
|
1036 |
+
else:
|
1037 |
+
return xt
|
1038 |
+
|
1039 |
+
def inverse(
|
1040 |
+
self,
|
1041 |
+
x,
|
1042 |
+
steps=20,
|
1043 |
+
t_start=None,
|
1044 |
+
t_end=None,
|
1045 |
+
order=2,
|
1046 |
+
skip_type="time_uniform",
|
1047 |
+
method="multistep",
|
1048 |
+
lower_order_final=True,
|
1049 |
+
denoise_to_zero=False,
|
1050 |
+
solver_type="dpmsolver",
|
1051 |
+
atol=0.0078,
|
1052 |
+
rtol=0.05,
|
1053 |
+
return_intermediate=False,
|
1054 |
+
):
|
1055 |
+
"""
|
1056 |
+
Inverse the sample `x` from time `t_start` to `t_end` by DPM-Solver.
|
1057 |
+
For discrete-time DPMs, we use `t_start=1/N`, where `N` is the total time steps during training.
|
1058 |
+
"""
|
1059 |
+
t_0 = 1.0 / self.noise_schedule.total_N if t_start is None else t_start
|
1060 |
+
t_T = self.noise_schedule.T if t_end is None else t_end
|
1061 |
+
assert (
|
1062 |
+
t_0 > 0 and t_T > 0
|
1063 |
+
), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
|
1064 |
+
return self.sample(
|
1065 |
+
x,
|
1066 |
+
steps=steps,
|
1067 |
+
t_start=t_0,
|
1068 |
+
t_end=t_T,
|
1069 |
+
order=order,
|
1070 |
+
skip_type=skip_type,
|
1071 |
+
method=method,
|
1072 |
+
lower_order_final=lower_order_final,
|
1073 |
+
denoise_to_zero=denoise_to_zero,
|
1074 |
+
solver_type=solver_type,
|
1075 |
+
atol=atol,
|
1076 |
+
rtol=rtol,
|
1077 |
+
return_intermediate=return_intermediate,
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
def sample(
|
1081 |
+
self,
|
1082 |
+
x,
|
1083 |
+
steps=20,
|
1084 |
+
t_start=None,
|
1085 |
+
t_end=None,
|
1086 |
+
order=2,
|
1087 |
+
skip_type="time_uniform",
|
1088 |
+
method="multistep",
|
1089 |
+
lower_order_final=True,
|
1090 |
+
denoise_to_zero=False,
|
1091 |
+
solver_type="dpmsolver",
|
1092 |
+
atol=0.0078,
|
1093 |
+
rtol=0.05,
|
1094 |
+
return_intermediate=False,
|
1095 |
+
flow_shift=1.0,
|
1096 |
+
):
|
1097 |
+
"""
|
1098 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
1099 |
+
|
1100 |
+
=====================================================
|
1101 |
+
|
1102 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
1103 |
+
- 'singlestep':
|
1104 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
1105 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
1106 |
+
The total number of function evaluations (NFE) == `steps`.
|
1107 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
1108 |
+
- If `order` == 1:
|
1109 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
1110 |
+
- If `order` == 2:
|
1111 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
1112 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
1113 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
1114 |
+
- If `order` == 3:
|
1115 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
1116 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
1117 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
1118 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
1119 |
+
- 'multistep':
|
1120 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
1121 |
+
We initialize the first `order` values by lower order multistep solvers.
|
1122 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
1123 |
+
Denote K = steps.
|
1124 |
+
- If `order` == 1:
|
1125 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
1126 |
+
- If `order` == 2:
|
1127 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
1128 |
+
- If `order` == 3:
|
1129 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
1130 |
+
- 'singlestep_fixed':
|
1131 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
1132 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
1133 |
+
- 'adaptive':
|
1134 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
1135 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
1136 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
1137 |
+
(NFE) and the sample quality.
|
1138 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
1139 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
1140 |
+
|
1141 |
+
=====================================================
|
1142 |
+
|
1143 |
+
Some advices for choosing the algorithm:
|
1144 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
1145 |
+
Use singlestep DPM-Solver or DPM-Solver++ ("DPM-Solver-fast" in the paper) with `order = 3`.
|
1146 |
+
e.g., DPM-Solver:
|
1147 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver")
|
1148 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
1149 |
+
skip_type='time_uniform', method='singlestep')
|
1150 |
+
e.g., DPM-Solver++:
|
1151 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
|
1152 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
1153 |
+
skip_type='time_uniform', method='singlestep')
|
1154 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
1155 |
+
Use multistep DPM-Solver with `algorithm_type="dpmsolver++"` and `order = 2`.
|
1156 |
+
e.g.
|
1157 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
|
1158 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
1159 |
+
skip_type='time_uniform', method='multistep')
|
1160 |
+
|
1161 |
+
We support three types of `skip_type`:
|
1162 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
1163 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
1164 |
+
- 'time_quadratic': quadratic time for the time steps.
|
1165 |
+
|
1166 |
+
=====================================================
|
1167 |
+
Args:
|
1168 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
1169 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
1170 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
1171 |
+
t_start: A `float`. The starting time of the sampling.
|
1172 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
1173 |
+
t_end: A `float`. The ending time of the sampling.
|
1174 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
1175 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
1176 |
+
For discrete-time DPMs:
|
1177 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
1178 |
+
For continuous-time DPMs:
|
1179 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
1180 |
+
order: A `int`. The order of DPM-Solver.
|
1181 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
1182 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
1183 |
+
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
1184 |
+
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
1185 |
+
|
1186 |
+
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
1187 |
+
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
1188 |
+
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
1189 |
+
(such as CIFAR-10). However, we observed that such trick does not matter for
|
1190 |
+
high-resolutional images. As it needs an additional NFE, we do not recommend
|
1191 |
+
it for high-resolutional images.
|
1192 |
+
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
1193 |
+
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
1194 |
+
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
1195 |
+
(especially for steps <= 10). So we recommend to set it to be `True`.
|
1196 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpmsolver` or `taylor`. We recommend `dpmsolver`.
|
1197 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1198 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1199 |
+
return_intermediate: A `bool`. Whether to save the xt at each step.
|
1200 |
+
When set to `True`, method returns a tuple (x0, intermediates); when set to False, method returns only x0.
|
1201 |
+
Returns:
|
1202 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
1203 |
+
|
1204 |
+
"""
|
1205 |
+
t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end
|
1206 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
1207 |
+
assert (
|
1208 |
+
t_0 > 0 and t_T > 0
|
1209 |
+
), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
|
1210 |
+
if return_intermediate:
|
1211 |
+
assert method in [
|
1212 |
+
"multistep",
|
1213 |
+
"singlestep",
|
1214 |
+
"singlestep_fixed",
|
1215 |
+
], "Cannot use adaptive solver when saving intermediate values"
|
1216 |
+
if self.correcting_xt_fn is not None:
|
1217 |
+
assert method in [
|
1218 |
+
"multistep",
|
1219 |
+
"singlestep",
|
1220 |
+
"singlestep_fixed",
|
1221 |
+
], "Cannot use adaptive solver when correcting_xt_fn is not None"
|
1222 |
+
device = x.device
|
1223 |
+
intermediates = []
|
1224 |
+
with torch.no_grad():
|
1225 |
+
if method == "adaptive":
|
1226 |
+
x = self.dpm_solver_adaptive(
|
1227 |
+
x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type
|
1228 |
+
)
|
1229 |
+
elif method == "multistep":
|
1230 |
+
assert steps >= order
|
1231 |
+
timesteps = self.get_time_steps(
|
1232 |
+
skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device, shift=flow_shift
|
1233 |
+
)
|
1234 |
+
assert timesteps.shape[0] - 1 == steps
|
1235 |
+
# Init the initial values.
|
1236 |
+
step = 0
|
1237 |
+
t = timesteps[step]
|
1238 |
+
t_prev_list = [t]
|
1239 |
+
model_prev_list = [self.model_fn(x, t)]
|
1240 |
+
if self.correcting_xt_fn is not None:
|
1241 |
+
x = self.correcting_xt_fn(x, t, step)
|
1242 |
+
if return_intermediate:
|
1243 |
+
intermediates.append(x)
|
1244 |
+
self.update_progress(step + 1, len(timesteps))
|
1245 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
1246 |
+
for step in range(1, order):
|
1247 |
+
t = timesteps[step]
|
1248 |
+
x = self.multistep_dpm_solver_update(
|
1249 |
+
x, model_prev_list, t_prev_list, t, step, solver_type=solver_type
|
1250 |
+
)
|
1251 |
+
if self.correcting_xt_fn is not None:
|
1252 |
+
x = self.correcting_xt_fn(x, t, step)
|
1253 |
+
if return_intermediate:
|
1254 |
+
intermediates.append(x)
|
1255 |
+
t_prev_list.append(t)
|
1256 |
+
model_prev_list.append(self.model_fn(x, t))
|
1257 |
+
# update progress bar
|
1258 |
+
self.update_progress(step + 1, len(timesteps))
|
1259 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
1260 |
+
for step in tqdm(range(order, steps + 1), disable=os.getenv("DPM_TQDM", "False") == "True"):
|
1261 |
+
t = timesteps[step]
|
1262 |
+
# We only use lower order for steps < 10
|
1263 |
+
# if lower_order_final and steps < 10:
|
1264 |
+
if lower_order_final: # recommended by Shuchen Xue
|
1265 |
+
step_order = min(order, steps + 1 - step)
|
1266 |
+
else:
|
1267 |
+
step_order = order
|
1268 |
+
x = self.multistep_dpm_solver_update(
|
1269 |
+
x, model_prev_list, t_prev_list, t, step_order, solver_type=solver_type
|
1270 |
+
)
|
1271 |
+
if self.correcting_xt_fn is not None:
|
1272 |
+
x = self.correcting_xt_fn(x, t, step)
|
1273 |
+
if return_intermediate:
|
1274 |
+
intermediates.append(x)
|
1275 |
+
for i in range(order - 1):
|
1276 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
1277 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
1278 |
+
t_prev_list[-1] = t
|
1279 |
+
# We do not need to evaluate the final model value.
|
1280 |
+
if step < steps:
|
1281 |
+
model_prev_list[-1] = self.model_fn(x, t)
|
1282 |
+
# update progress bar
|
1283 |
+
self.update_progress(step + 1, len(timesteps))
|
1284 |
+
elif method in ["singlestep", "singlestep_fixed"]:
|
1285 |
+
if method == "singlestep":
|
1286 |
+
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(
|
1287 |
+
steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device
|
1288 |
+
)
|
1289 |
+
elif method == "singlestep_fixed":
|
1290 |
+
K = steps // order
|
1291 |
+
orders = [
|
1292 |
+
order,
|
1293 |
+
] * K
|
1294 |
+
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
1295 |
+
for step, order in enumerate(orders):
|
1296 |
+
s, t = timesteps_outer[step], timesteps_outer[step + 1]
|
1297 |
+
timesteps_inner = self.get_time_steps(
|
1298 |
+
skip_type=skip_type, t_T=s.item(), t_0=t.item(), N=order, device=device
|
1299 |
+
)
|
1300 |
+
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
1301 |
+
h = lambda_inner[-1] - lambda_inner[0]
|
1302 |
+
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
1303 |
+
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
1304 |
+
x = self.singlestep_dpm_solver_update(x, s, t, order, solver_type=solver_type, r1=r1, r2=r2)
|
1305 |
+
if self.correcting_xt_fn is not None:
|
1306 |
+
x = self.correcting_xt_fn(x, t, step)
|
1307 |
+
if return_intermediate:
|
1308 |
+
intermediates.append(x)
|
1309 |
+
self.update_progress(step + 1, len(timesteps_outer))
|
1310 |
+
else:
|
1311 |
+
raise ValueError(f"Got wrong method {method}")
|
1312 |
+
if denoise_to_zero:
|
1313 |
+
t = torch.ones((1,)).to(device) * t_0
|
1314 |
+
x = self.denoise_to_zero_fn(x, t)
|
1315 |
+
if self.correcting_xt_fn is not None:
|
1316 |
+
x = self.correcting_xt_fn(x, t, step + 1)
|
1317 |
+
if return_intermediate:
|
1318 |
+
intermediates.append(x)
|
1319 |
+
if return_intermediate:
|
1320 |
+
return x, intermediates
|
1321 |
+
else:
|
1322 |
+
return x
|
1323 |
+
|
1324 |
+
|
1325 |
+
#############################################################
|
1326 |
+
# other utility functions
|
1327 |
+
#############################################################
|
1328 |
+
|
1329 |
+
|
1330 |
+
def interpolate_fn(x, xp, yp):
|
1331 |
+
"""
|
1332 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
1333 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
1334 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
1335 |
+
|
1336 |
+
Args:
|
1337 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
1338 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
1339 |
+
yp: PyTorch tensor with shape [C, K].
|
1340 |
+
Returns:
|
1341 |
+
The function values f(x), with shape [N, C].
|
1342 |
+
"""
|
1343 |
+
N, K = x.shape[0], xp.shape[1]
|
1344 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
1345 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
1346 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
1347 |
+
cand_start_idx = x_idx - 1
|
1348 |
+
start_idx = torch.where(
|
1349 |
+
torch.eq(x_idx, 0),
|
1350 |
+
torch.tensor(1, device=x.device),
|
1351 |
+
torch.where(
|
1352 |
+
torch.eq(x_idx, K),
|
1353 |
+
torch.tensor(K - 2, device=x.device),
|
1354 |
+
cand_start_idx,
|
1355 |
+
),
|
1356 |
+
)
|
1357 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
1358 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
1359 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
1360 |
+
start_idx2 = torch.where(
|
1361 |
+
torch.eq(x_idx, 0),
|
1362 |
+
torch.tensor(0, device=x.device),
|
1363 |
+
torch.where(
|
1364 |
+
torch.eq(x_idx, K),
|
1365 |
+
torch.tensor(K - 2, device=x.device),
|
1366 |
+
cand_start_idx,
|
1367 |
+
),
|
1368 |
+
)
|
1369 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
1370 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
1371 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
1372 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
1373 |
+
return cand
|
1374 |
+
|
1375 |
+
|
1376 |
+
def expand_dims(v, dims):
|
1377 |
+
"""
|
1378 |
+
Expand the tensor `v` to the dim `dims`.
|
1379 |
+
|
1380 |
+
Args:
|
1381 |
+
`v`: a PyTorch tensor with shape [N].
|
1382 |
+
`dim`: a `int`.
|
1383 |
+
Returns:
|
1384 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
1385 |
+
"""
|
1386 |
+
return v[(...,) + (None,) * (dims - 1)]
|
transport/integrators.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch as th
|
2 |
+
from torchdiffeq import odeint
|
3 |
+
from .utils import time_shift, get_lin_function
|
4 |
+
|
5 |
+
class sde:
|
6 |
+
"""SDE solver class"""
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
drift,
|
11 |
+
diffusion,
|
12 |
+
*,
|
13 |
+
t0,
|
14 |
+
t1,
|
15 |
+
num_steps,
|
16 |
+
sampler_type,
|
17 |
+
):
|
18 |
+
assert t0 < t1, "SDE sampler has to be in forward time"
|
19 |
+
|
20 |
+
self.num_timesteps = num_steps
|
21 |
+
self.t = th.linspace(t0, t1, num_steps)
|
22 |
+
self.dt = self.t[1] - self.t[0]
|
23 |
+
self.drift = drift
|
24 |
+
self.diffusion = diffusion
|
25 |
+
self.sampler_type = sampler_type
|
26 |
+
|
27 |
+
def __Euler_Maruyama_step(self, x, mean_x, t, model, **model_kwargs):
|
28 |
+
w_cur = th.randn(x.size()).to(x)
|
29 |
+
t = th.ones(x.size(0)).to(x) * t
|
30 |
+
dw = w_cur * th.sqrt(self.dt)
|
31 |
+
drift = self.drift(x, t, model, **model_kwargs)
|
32 |
+
diffusion = self.diffusion(x, t)
|
33 |
+
mean_x = x + drift * self.dt
|
34 |
+
x = mean_x + th.sqrt(2 * diffusion) * dw
|
35 |
+
return x, mean_x
|
36 |
+
|
37 |
+
def __Heun_step(self, x, _, t, model, **model_kwargs):
|
38 |
+
w_cur = th.randn(x.size()).to(x)
|
39 |
+
dw = w_cur * th.sqrt(self.dt)
|
40 |
+
t_cur = th.ones(x.size(0)).to(x) * t
|
41 |
+
diffusion = self.diffusion(x, t_cur)
|
42 |
+
xhat = x + th.sqrt(2 * diffusion) * dw
|
43 |
+
K1 = self.drift(xhat, t_cur, model, **model_kwargs)
|
44 |
+
xp = xhat + self.dt * K1
|
45 |
+
K2 = self.drift(xp, t_cur + self.dt, model, **model_kwargs)
|
46 |
+
return (
|
47 |
+
xhat + 0.5 * self.dt * (K1 + K2),
|
48 |
+
xhat,
|
49 |
+
) # at last time point we do not perform the heun step
|
50 |
+
|
51 |
+
def __forward_fn(self):
|
52 |
+
"""TODO: generalize here by adding all private functions ending with steps to it"""
|
53 |
+
sampler_dict = {
|
54 |
+
"Euler": self.__Euler_Maruyama_step,
|
55 |
+
"Heun": self.__Heun_step,
|
56 |
+
}
|
57 |
+
|
58 |
+
try:
|
59 |
+
sampler = sampler_dict[self.sampler_type]
|
60 |
+
except:
|
61 |
+
raise NotImplementedError("Smapler type not implemented.")
|
62 |
+
|
63 |
+
return sampler
|
64 |
+
|
65 |
+
def sample(self, init, model, **model_kwargs):
|
66 |
+
"""forward loop of sde"""
|
67 |
+
x = init
|
68 |
+
mean_x = init
|
69 |
+
samples = []
|
70 |
+
sampler = self.__forward_fn()
|
71 |
+
for ti in self.t[:-1]:
|
72 |
+
with th.no_grad():
|
73 |
+
x, mean_x = sampler(x, mean_x, ti, model, **model_kwargs)
|
74 |
+
samples.append(x)
|
75 |
+
|
76 |
+
return samples
|
77 |
+
|
78 |
+
|
79 |
+
class ode:
|
80 |
+
"""ODE solver class"""
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
drift,
|
85 |
+
*,
|
86 |
+
t0,
|
87 |
+
t1,
|
88 |
+
sampler_type,
|
89 |
+
num_steps,
|
90 |
+
atol,
|
91 |
+
rtol,
|
92 |
+
do_shift=False,
|
93 |
+
time_shifting_factor=None,
|
94 |
+
):
|
95 |
+
assert t0 < t1, "ODE sampler has to be in forward time"
|
96 |
+
|
97 |
+
self.drift = drift
|
98 |
+
self.do_shift = do_shift
|
99 |
+
self.t = th.linspace(t0, t1, num_steps)
|
100 |
+
if time_shifting_factor:
|
101 |
+
self.t = self.t / (self.t + time_shifting_factor - time_shifting_factor * self.t)
|
102 |
+
self.atol = atol
|
103 |
+
self.rtol = rtol
|
104 |
+
self.sampler_type = sampler_type
|
105 |
+
|
106 |
+
def sample(self, x, model, **model_kwargs):
|
107 |
+
x = x.float()
|
108 |
+
device = x[0].device if isinstance(x, tuple) else x.device
|
109 |
+
|
110 |
+
def _fn(t, x):
|
111 |
+
t = th.ones(x[0].size(0)).to(device) * t if isinstance(x, tuple) else th.ones(x.size(0)).to(device) * t
|
112 |
+
model_output = self.drift(x, t, model, **model_kwargs).float()
|
113 |
+
return model_output
|
114 |
+
|
115 |
+
t = self.t.to(device)
|
116 |
+
if self.do_shift:
|
117 |
+
mu = get_lin_function(y1=0.5, y2=1.15)(x.shape[1])
|
118 |
+
t = time_shift(mu, 1.0, t)
|
119 |
+
atol = [self.atol] * len(x) if isinstance(x, tuple) else [self.atol]
|
120 |
+
rtol = [self.rtol] * len(x) if isinstance(x, tuple) else [self.rtol]
|
121 |
+
samples = odeint(_fn, x, t, method=self.sampler_type, atol=atol, rtol=rtol)
|
122 |
+
return samples
|
transport/path.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch as th
|
3 |
+
|
4 |
+
|
5 |
+
def expand_t_like_x(t, x):
|
6 |
+
"""Function to reshape time t to broadcastable dimension of x
|
7 |
+
Args:
|
8 |
+
t: [batch_dim,], time vector
|
9 |
+
x: [batch_dim,...], data point
|
10 |
+
"""
|
11 |
+
dims = [1] * len(x[0].size())
|
12 |
+
t = t.view(t.size(0), *dims)
|
13 |
+
return t
|
14 |
+
|
15 |
+
|
16 |
+
#################### Coupling Plans ####################
|
17 |
+
|
18 |
+
|
19 |
+
class ICPlan:
|
20 |
+
"""Linear Coupling Plan"""
|
21 |
+
|
22 |
+
def __init__(self, sigma=0.0):
|
23 |
+
self.sigma = sigma
|
24 |
+
|
25 |
+
def compute_alpha_t(self, t):
|
26 |
+
"""Compute the data coefficient along the path"""
|
27 |
+
return t, 1
|
28 |
+
|
29 |
+
def compute_sigma_t(self, t):
|
30 |
+
"""Compute the noise coefficient along the path"""
|
31 |
+
return 1 - t, -1
|
32 |
+
|
33 |
+
def compute_d_alpha_alpha_ratio_t(self, t):
|
34 |
+
"""Compute the ratio between d_alpha and alpha"""
|
35 |
+
return 1 / t
|
36 |
+
|
37 |
+
def compute_drift(self, x, t):
|
38 |
+
"""We always output sde according to score parametrization;"""
|
39 |
+
t = expand_t_like_x(t, x)
|
40 |
+
alpha_ratio = self.compute_d_alpha_alpha_ratio_t(t)
|
41 |
+
sigma_t, d_sigma_t = self.compute_sigma_t(t)
|
42 |
+
drift = alpha_ratio * x
|
43 |
+
diffusion = alpha_ratio * (sigma_t**2) - sigma_t * d_sigma_t
|
44 |
+
|
45 |
+
return -drift, diffusion
|
46 |
+
|
47 |
+
def compute_diffusion(self, x, t, form="constant", norm=1.0):
|
48 |
+
"""Compute the diffusion term of the SDE
|
49 |
+
Args:
|
50 |
+
x: [batch_dim, ...], data point
|
51 |
+
t: [batch_dim,], time vector
|
52 |
+
form: str, form of the diffusion term
|
53 |
+
norm: float, norm of the diffusion term
|
54 |
+
"""
|
55 |
+
t = expand_t_like_x(t, x)
|
56 |
+
choices = {
|
57 |
+
"constant": norm,
|
58 |
+
"SBDM": norm * self.compute_drift(x, t)[1],
|
59 |
+
"sigma": norm * self.compute_sigma_t(t)[0],
|
60 |
+
"linear": norm * (1 - t),
|
61 |
+
"decreasing": 0.25 * (norm * th.cos(np.pi * t) + 1) ** 2,
|
62 |
+
"inccreasing-decreasing": norm * th.sin(np.pi * t) ** 2,
|
63 |
+
}
|
64 |
+
|
65 |
+
try:
|
66 |
+
diffusion = choices[form]
|
67 |
+
except KeyError:
|
68 |
+
raise NotImplementedError(f"Diffusion form {form} not implemented")
|
69 |
+
|
70 |
+
return diffusion
|
71 |
+
|
72 |
+
def get_score_from_velocity(self, velocity, x, t):
|
73 |
+
"""Wrapper function: transfrom velocity prediction model to score
|
74 |
+
Args:
|
75 |
+
velocity: [batch_dim, ...] shaped tensor; velocity model output
|
76 |
+
x: [batch_dim, ...] shaped tensor; x_t data point
|
77 |
+
t: [batch_dim,] time tensor
|
78 |
+
"""
|
79 |
+
t = expand_t_like_x(t, x)
|
80 |
+
alpha_t, d_alpha_t = self.compute_alpha_t(t)
|
81 |
+
sigma_t, d_sigma_t = self.compute_sigma_t(t)
|
82 |
+
mean = x
|
83 |
+
reverse_alpha_ratio = alpha_t / d_alpha_t
|
84 |
+
var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t
|
85 |
+
score = (reverse_alpha_ratio * velocity - mean) / var
|
86 |
+
return score
|
87 |
+
|
88 |
+
def get_noise_from_velocity(self, velocity, x, t):
|
89 |
+
"""Wrapper function: transfrom velocity prediction model to denoiser
|
90 |
+
Args:
|
91 |
+
velocity: [batch_dim, ...] shaped tensor; velocity model output
|
92 |
+
x: [batch_dim, ...] shaped tensor; x_t data point
|
93 |
+
t: [batch_dim,] time tensor
|
94 |
+
"""
|
95 |
+
t = expand_t_like_x(t, x)
|
96 |
+
alpha_t, d_alpha_t = self.compute_alpha_t(t)
|
97 |
+
sigma_t, d_sigma_t = self.compute_sigma_t(t)
|
98 |
+
mean = x
|
99 |
+
reverse_alpha_ratio = alpha_t / d_alpha_t
|
100 |
+
var = reverse_alpha_ratio * d_sigma_t - sigma_t
|
101 |
+
noise = (reverse_alpha_ratio * velocity - mean) / var
|
102 |
+
return noise
|
103 |
+
|
104 |
+
def get_velocity_from_score(self, score, x, t):
|
105 |
+
"""Wrapper function: transfrom score prediction model to velocity
|
106 |
+
Args:
|
107 |
+
score: [batch_dim, ...] shaped tensor; score model output
|
108 |
+
x: [batch_dim, ...] shaped tensor; x_t data point
|
109 |
+
t: [batch_dim,] time tensor
|
110 |
+
"""
|
111 |
+
t = expand_t_like_x(t, x)
|
112 |
+
drift, var = self.compute_drift(x, t)
|
113 |
+
velocity = var * score - drift
|
114 |
+
return velocity
|
115 |
+
|
116 |
+
def compute_mu_t(self, t, x0, x1):
|
117 |
+
"""Compute the mean of time-dependent density p_t"""
|
118 |
+
t = expand_t_like_x(t, x1)
|
119 |
+
alpha_t, _ = self.compute_alpha_t(t)
|
120 |
+
sigma_t, _ = self.compute_sigma_t(t)
|
121 |
+
if isinstance(x1, (list, tuple)):
|
122 |
+
return [alpha_t[i] * x1[i] + sigma_t[i] * x0[i] for i in range(len(x1))]
|
123 |
+
else:
|
124 |
+
return alpha_t * x1 + sigma_t * x0
|
125 |
+
|
126 |
+
def compute_xt(self, t, x0, x1):
|
127 |
+
"""Sample xt from time-dependent density p_t; rng is required"""
|
128 |
+
xt = self.compute_mu_t(t, x0, x1)
|
129 |
+
return xt
|
130 |
+
|
131 |
+
def compute_ut(self, t, x0, x1, xt):
|
132 |
+
"""Compute the vector field corresponding to p_t"""
|
133 |
+
t = expand_t_like_x(t, x1)
|
134 |
+
_, d_alpha_t = self.compute_alpha_t(t)
|
135 |
+
_, d_sigma_t = self.compute_sigma_t(t)
|
136 |
+
if isinstance(x1, (list, tuple)):
|
137 |
+
return [d_alpha_t * x1[i] + d_sigma_t * x0[i] for i in range(len(x1))]
|
138 |
+
else:
|
139 |
+
return d_alpha_t * x1 + d_sigma_t * x0
|
140 |
+
|
141 |
+
def plan(self, t, x0, x1):
|
142 |
+
xt = self.compute_xt(t, x0, x1)
|
143 |
+
ut = self.compute_ut(t, x0, x1, xt)
|
144 |
+
return t, xt, ut
|
145 |
+
|
146 |
+
|
147 |
+
class VPCPlan(ICPlan):
|
148 |
+
"""class for VP path flow matching"""
|
149 |
+
|
150 |
+
def __init__(self, sigma_min=0.1, sigma_max=20.0):
|
151 |
+
self.sigma_min = sigma_min
|
152 |
+
self.sigma_max = sigma_max
|
153 |
+
self.log_mean_coeff = (
|
154 |
+
lambda t: -0.25 * ((1 - t) ** 2) * (self.sigma_max - self.sigma_min) - 0.5 * (1 - t) * self.sigma_min
|
155 |
+
)
|
156 |
+
self.d_log_mean_coeff = lambda t: 0.5 * (1 - t) * (self.sigma_max - self.sigma_min) + 0.5 * self.sigma_min
|
157 |
+
|
158 |
+
def compute_alpha_t(self, t):
|
159 |
+
"""Compute coefficient of x1"""
|
160 |
+
alpha_t = self.log_mean_coeff(t)
|
161 |
+
alpha_t = th.exp(alpha_t)
|
162 |
+
d_alpha_t = alpha_t * self.d_log_mean_coeff(t)
|
163 |
+
return alpha_t, d_alpha_t
|
164 |
+
|
165 |
+
def compute_sigma_t(self, t):
|
166 |
+
"""Compute coefficient of x0"""
|
167 |
+
p_sigma_t = 2 * self.log_mean_coeff(t)
|
168 |
+
sigma_t = th.sqrt(1 - th.exp(p_sigma_t))
|
169 |
+
d_sigma_t = th.exp(p_sigma_t) * (2 * self.d_log_mean_coeff(t)) / (-2 * sigma_t)
|
170 |
+
return sigma_t, d_sigma_t
|
171 |
+
|
172 |
+
def compute_d_alpha_alpha_ratio_t(self, t):
|
173 |
+
"""Special purposed function for computing numerical stabled d_alpha_t / alpha_t"""
|
174 |
+
return self.d_log_mean_coeff(t)
|
175 |
+
|
176 |
+
def compute_drift(self, x, t):
|
177 |
+
"""Compute the drift term of the SDE"""
|
178 |
+
t = expand_t_like_x(t, x)
|
179 |
+
beta_t = self.sigma_min + (1 - t) * (self.sigma_max - self.sigma_min)
|
180 |
+
return -0.5 * beta_t * x, beta_t / 2
|
181 |
+
|
182 |
+
|
183 |
+
class GVPCPlan(ICPlan):
|
184 |
+
def __init__(self, sigma=0.0):
|
185 |
+
super().__init__(sigma)
|
186 |
+
|
187 |
+
def compute_alpha_t(self, t):
|
188 |
+
"""Compute coefficient of x1"""
|
189 |
+
alpha_t = th.sin(t * np.pi / 2)
|
190 |
+
d_alpha_t = np.pi / 2 * th.cos(t * np.pi / 2)
|
191 |
+
return alpha_t, d_alpha_t
|
192 |
+
|
193 |
+
def compute_sigma_t(self, t):
|
194 |
+
"""Compute coefficient of x0"""
|
195 |
+
sigma_t = th.cos(t * np.pi / 2)
|
196 |
+
d_sigma_t = -np.pi / 2 * th.sin(t * np.pi / 2)
|
197 |
+
return sigma_t, d_sigma_t
|
198 |
+
|
199 |
+
def compute_d_alpha_alpha_ratio_t(self, t):
|
200 |
+
"""Special purposed function for computing numerical stabled d_alpha_t / alpha_t"""
|
201 |
+
return np.pi / (2 * th.tan(t * np.pi / 2))
|
transport/transport.py
ADDED
@@ -0,0 +1,490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import enum
|
2 |
+
import math
|
3 |
+
from typing import Callable
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch as th
|
7 |
+
|
8 |
+
from . import path
|
9 |
+
from .integrators import ode, sde
|
10 |
+
from .utils import mean_flat, expand_dims
|
11 |
+
from .dpm_solver import NoiseScheduleFlow, model_wrapper, DPM_Solver
|
12 |
+
|
13 |
+
|
14 |
+
class ModelType(enum.Enum):
|
15 |
+
"""
|
16 |
+
Which type of output the model predicts.
|
17 |
+
"""
|
18 |
+
|
19 |
+
NOISE = enum.auto() # the model predicts epsilon
|
20 |
+
SCORE = enum.auto() # the model predicts \nabla \log p(x)
|
21 |
+
VELOCITY = enum.auto() # the model predicts v(x)
|
22 |
+
|
23 |
+
|
24 |
+
class PathType(enum.Enum):
|
25 |
+
"""
|
26 |
+
Which type of path to use.
|
27 |
+
"""
|
28 |
+
|
29 |
+
LINEAR = enum.auto()
|
30 |
+
GVP = enum.auto()
|
31 |
+
VP = enum.auto()
|
32 |
+
|
33 |
+
|
34 |
+
class WeightType(enum.Enum):
|
35 |
+
"""
|
36 |
+
Which type of weighting to use.
|
37 |
+
"""
|
38 |
+
|
39 |
+
NONE = enum.auto()
|
40 |
+
VELOCITY = enum.auto()
|
41 |
+
LIKELIHOOD = enum.auto()
|
42 |
+
|
43 |
+
|
44 |
+
class Transport:
|
45 |
+
def __init__(self, *, model_type, path_type, loss_type, train_eps, sample_eps, snr_type, do_shift, seq_len):
|
46 |
+
path_options = {
|
47 |
+
PathType.LINEAR: path.ICPlan,
|
48 |
+
PathType.GVP: path.GVPCPlan,
|
49 |
+
PathType.VP: path.VPCPlan,
|
50 |
+
}
|
51 |
+
|
52 |
+
self.loss_type = loss_type
|
53 |
+
self.model_type = model_type
|
54 |
+
self.path_sampler = path_options[path_type]()
|
55 |
+
self.train_eps = train_eps
|
56 |
+
self.sample_eps = sample_eps
|
57 |
+
|
58 |
+
self.snr_type = snr_type
|
59 |
+
self.do_shift = do_shift
|
60 |
+
self.seq_len = seq_len
|
61 |
+
|
62 |
+
def prior_logp(self, z):
|
63 |
+
"""
|
64 |
+
Standard multivariate normal prior
|
65 |
+
Assume z is batched
|
66 |
+
"""
|
67 |
+
shape = th.tensor(z.size())
|
68 |
+
N = th.prod(shape[1:])
|
69 |
+
_fn = lambda x: -N / 2.0 * np.log(2 * np.pi) - th.sum(x**2) / 2.0
|
70 |
+
return th.vmap(_fn)(z)
|
71 |
+
|
72 |
+
def check_interval(
|
73 |
+
self,
|
74 |
+
train_eps,
|
75 |
+
sample_eps,
|
76 |
+
*,
|
77 |
+
diffusion_form="SBDM",
|
78 |
+
sde=False,
|
79 |
+
reverse=False,
|
80 |
+
eval=False,
|
81 |
+
last_step_size=0.0,
|
82 |
+
):
|
83 |
+
t0 = 0
|
84 |
+
t1 = 1
|
85 |
+
eps = train_eps if not eval else sample_eps
|
86 |
+
if type(self.path_sampler) in [path.VPCPlan]:
|
87 |
+
t1 = 1 - eps if (not sde or last_step_size == 0) else 1 - last_step_size
|
88 |
+
|
89 |
+
elif (type(self.path_sampler) in [path.ICPlan, path.GVPCPlan]) and (
|
90 |
+
self.model_type != ModelType.VELOCITY or sde
|
91 |
+
): # avoid numerical issue by taking a first semi-implicit step
|
92 |
+
t0 = eps if (diffusion_form == "SBDM" and sde) or self.model_type != ModelType.VELOCITY else 0
|
93 |
+
t1 = 1 - eps if (not sde or last_step_size == 0) else 1 - last_step_size
|
94 |
+
|
95 |
+
if reverse:
|
96 |
+
t0, t1 = 1 - t0, 1 - t1
|
97 |
+
|
98 |
+
return t0, t1
|
99 |
+
|
100 |
+
def sample(self, x1):
|
101 |
+
"""Sampling x0 & t based on shape of x1 (if needed)
|
102 |
+
Args:
|
103 |
+
x1 - data point; [batch, *dim]
|
104 |
+
"""
|
105 |
+
if isinstance(x1, (list, tuple)):
|
106 |
+
x0 = [th.randn_like(img_start) for img_start in x1]
|
107 |
+
else:
|
108 |
+
x0 = th.randn_like(x1)
|
109 |
+
t0, t1 = self.check_interval(self.train_eps, self.sample_eps)
|
110 |
+
|
111 |
+
if self.snr_type.startswith("uniform"):
|
112 |
+
assert t0 == 0.0 and t1 == 1.0, "not implemented."
|
113 |
+
if "_" in self.snr_type:
|
114 |
+
_, t0, t1 = self.snr_type.split("_")
|
115 |
+
t0, t1 = float(t0), float(t1)
|
116 |
+
t = th.rand((len(x1),)) * (t1 - t0) + t0
|
117 |
+
elif self.snr_type == "lognorm":
|
118 |
+
u = th.normal(mean=0.0, std=1.0, size=(len(x1),))
|
119 |
+
t = 1 / (1 + th.exp(-u)) * (t1 - t0) + t0
|
120 |
+
else:
|
121 |
+
raise NotImplementedError("Not implemented snr_type %s" % self.snr_type)
|
122 |
+
|
123 |
+
if self.do_shift:
|
124 |
+
base_shift: float = 0.5
|
125 |
+
max_shift: float = 1.15
|
126 |
+
mu = self.get_lin_function(y1=base_shift, y2=max_shift)(self.seq_len)
|
127 |
+
t = self.time_shift(mu, 1.0, t)
|
128 |
+
t = t.to(x1[0])
|
129 |
+
return t, x0, x1
|
130 |
+
|
131 |
+
def time_shift(self, mu: float, sigma: float, t: th.Tensor):
|
132 |
+
# the following implementation was original for t=0: clean / t=1: noise
|
133 |
+
# Since we adopt the reverse, the 1-t operations are needed
|
134 |
+
t = 1 - t
|
135 |
+
t = math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
136 |
+
t = 1 - t
|
137 |
+
return t
|
138 |
+
|
139 |
+
def get_lin_function(
|
140 |
+
self, x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
141 |
+
) -> Callable[[float], float]:
|
142 |
+
m = (y2 - y1) / (x2 - x1)
|
143 |
+
b = y1 - m * x1
|
144 |
+
return lambda x: m * x + b
|
145 |
+
|
146 |
+
def training_losses(self, model, x1, model_kwargs=None):
|
147 |
+
"""Loss for training the score model
|
148 |
+
Args:
|
149 |
+
- model: backbone model; could be score, noise, or velocity
|
150 |
+
- x1: datapoint
|
151 |
+
- model_kwargs: additional arguments for the model
|
152 |
+
"""
|
153 |
+
if model_kwargs == None:
|
154 |
+
model_kwargs = {}
|
155 |
+
t, x0, x1 = self.sample(x1)
|
156 |
+
t, xt, ut = self.path_sampler.plan(t, x0, x1)
|
157 |
+
if "cond" in model_kwargs:
|
158 |
+
conds = model_kwargs.pop("cond")
|
159 |
+
xt = [th.cat([x, cond], dim=0) if cond is not None else x for x, cond in zip(xt, conds)]
|
160 |
+
model_output = model(xt, t, **model_kwargs)
|
161 |
+
B = len(x0)
|
162 |
+
|
163 |
+
terms = {}
|
164 |
+
# terms['pred'] = model_output
|
165 |
+
if self.model_type == ModelType.VELOCITY:
|
166 |
+
if isinstance(x1, (list, tuple)):
|
167 |
+
assert len(model_output) == len(ut) == len(x1)
|
168 |
+
for i in range(B):
|
169 |
+
assert (
|
170 |
+
model_output[i].shape == ut[i].shape == x1[i].shape
|
171 |
+
), f"{model_output[i].shape} {ut[i].shape} {x1[i].shape}"
|
172 |
+
terms["task_loss"] = th.stack(
|
173 |
+
[((ut[i] - model_output[i]) ** 2).mean() for i in range(B)],
|
174 |
+
dim=0,
|
175 |
+
)
|
176 |
+
else:
|
177 |
+
terms["task_loss"] = mean_flat(((model_output - ut) ** 2))
|
178 |
+
else:
|
179 |
+
raise NotImplementedError
|
180 |
+
|
181 |
+
terms["loss"] = terms["task_loss"]
|
182 |
+
terms["task_loss"] = terms["task_loss"].clone().detach()
|
183 |
+
terms["t"] = t
|
184 |
+
return terms
|
185 |
+
|
186 |
+
def get_drift(self):
|
187 |
+
"""member function for obtaining the drift of the probability flow ODE"""
|
188 |
+
|
189 |
+
def score_ode(x, t, model, **model_kwargs):
|
190 |
+
drift_mean, drift_var = self.path_sampler.compute_drift(x, t)
|
191 |
+
model_output = model(x, t, **model_kwargs)
|
192 |
+
return -drift_mean + drift_var * model_output # by change of variable
|
193 |
+
|
194 |
+
def noise_ode(x, t, model, **model_kwargs):
|
195 |
+
drift_mean, drift_var = self.path_sampler.compute_drift(x, t)
|
196 |
+
sigma_t, _ = self.path_sampler.compute_sigma_t(path.expand_t_like_x(t, x))
|
197 |
+
model_output = model(x, t, **model_kwargs)
|
198 |
+
score = model_output / -sigma_t
|
199 |
+
return -drift_mean + drift_var * score
|
200 |
+
|
201 |
+
def velocity_ode(x, t, model, **model_kwargs):
|
202 |
+
model_output = model(x, t, **model_kwargs)
|
203 |
+
return model_output
|
204 |
+
|
205 |
+
if self.model_type == ModelType.NOISE:
|
206 |
+
drift_fn = noise_ode
|
207 |
+
elif self.model_type == ModelType.SCORE:
|
208 |
+
drift_fn = score_ode
|
209 |
+
else:
|
210 |
+
drift_fn = velocity_ode
|
211 |
+
|
212 |
+
def body_fn(x, t, model, **model_kwargs):
|
213 |
+
model_output = drift_fn(x, t, model, **model_kwargs)
|
214 |
+
assert model_output.shape == x.shape, "Output shape from ODE solver must match input shape"
|
215 |
+
return model_output
|
216 |
+
|
217 |
+
return body_fn
|
218 |
+
|
219 |
+
def get_score(
|
220 |
+
self,
|
221 |
+
):
|
222 |
+
"""member function for obtaining score of
|
223 |
+
x_t = alpha_t * x + sigma_t * eps"""
|
224 |
+
if self.model_type == ModelType.NOISE:
|
225 |
+
score_fn = (
|
226 |
+
lambda x, t, model, **kwargs: model(x, t, **kwargs)
|
227 |
+
/ -self.path_sampler.compute_sigma_t(path.expand_t_like_x(t, x))[0]
|
228 |
+
)
|
229 |
+
elif self.model_type == ModelType.SCORE:
|
230 |
+
score_fn = lambda x, t, model, **kwagrs: model(x, t, **kwagrs)
|
231 |
+
elif self.model_type == ModelType.VELOCITY:
|
232 |
+
score_fn = lambda x, t, model, **kwargs: self.path_sampler.get_score_from_velocity(
|
233 |
+
model(x, t, **kwargs), x, t
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
raise NotImplementedError()
|
237 |
+
|
238 |
+
return score_fn
|
239 |
+
|
240 |
+
|
241 |
+
class Sampler:
|
242 |
+
"""Sampler class for the transport model"""
|
243 |
+
|
244 |
+
def __init__(
|
245 |
+
self,
|
246 |
+
transport,
|
247 |
+
):
|
248 |
+
"""Constructor for a general sampler; supporting different sampling methods
|
249 |
+
Args:
|
250 |
+
- transport: an tranport object specify model prediction & interpolant type
|
251 |
+
"""
|
252 |
+
|
253 |
+
self.transport = transport
|
254 |
+
self.drift = self.transport.get_drift()
|
255 |
+
self.score = self.transport.get_score()
|
256 |
+
|
257 |
+
def __get_sde_diffusion_and_drift(
|
258 |
+
self,
|
259 |
+
*,
|
260 |
+
diffusion_form="SBDM",
|
261 |
+
diffusion_norm=1.0,
|
262 |
+
):
|
263 |
+
def diffusion_fn(x, t):
|
264 |
+
diffusion = self.transport.path_sampler.compute_diffusion(x, t, form=diffusion_form, norm=diffusion_norm)
|
265 |
+
return diffusion
|
266 |
+
|
267 |
+
sde_drift = lambda x, t, model, **kwargs: self.drift(x, t, model, **kwargs) + diffusion_fn(x, t) * self.score(
|
268 |
+
x, t, model, **kwargs
|
269 |
+
)
|
270 |
+
|
271 |
+
sde_diffusion = diffusion_fn
|
272 |
+
|
273 |
+
return sde_drift, sde_diffusion
|
274 |
+
|
275 |
+
def __get_last_step(
|
276 |
+
self,
|
277 |
+
sde_drift,
|
278 |
+
*,
|
279 |
+
last_step,
|
280 |
+
last_step_size,
|
281 |
+
):
|
282 |
+
"""Get the last step function of the SDE solver"""
|
283 |
+
|
284 |
+
if last_step is None:
|
285 |
+
last_step_fn = lambda x, t, model, **model_kwargs: x
|
286 |
+
elif last_step == "Mean":
|
287 |
+
last_step_fn = (
|
288 |
+
lambda x, t, model, **model_kwargs: x + sde_drift(x, t, model, **model_kwargs) * last_step_size
|
289 |
+
)
|
290 |
+
elif last_step == "Tweedie":
|
291 |
+
alpha = self.transport.path_sampler.compute_alpha_t # simple aliasing; the original name was too long
|
292 |
+
sigma = self.transport.path_sampler.compute_sigma_t
|
293 |
+
last_step_fn = lambda x, t, model, **model_kwargs: x / alpha(t)[0][0] + (sigma(t)[0][0] ** 2) / alpha(t)[0][
|
294 |
+
0
|
295 |
+
] * self.score(x, t, model, **model_kwargs)
|
296 |
+
elif last_step == "Euler":
|
297 |
+
last_step_fn = (
|
298 |
+
lambda x, t, model, **model_kwargs: x + self.drift(x, t, model, **model_kwargs) * last_step_size
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
raise NotImplementedError()
|
302 |
+
|
303 |
+
return last_step_fn
|
304 |
+
|
305 |
+
def sample_sde(
|
306 |
+
self,
|
307 |
+
*,
|
308 |
+
sampling_method="Euler",
|
309 |
+
diffusion_form="SBDM",
|
310 |
+
diffusion_norm=1.0,
|
311 |
+
last_step="Mean",
|
312 |
+
last_step_size=0.04,
|
313 |
+
num_steps=250,
|
314 |
+
):
|
315 |
+
"""returns a sampling function with given SDE settings
|
316 |
+
Args:
|
317 |
+
- sampling_method: type of sampler used in solving the SDE; default to be Euler-Maruyama
|
318 |
+
- diffusion_form: function form of diffusion coefficient; default to be matching SBDM
|
319 |
+
- diffusion_norm: function magnitude of diffusion coefficient; default to 1
|
320 |
+
- last_step: type of the last step; default to identity
|
321 |
+
- last_step_size: size of the last step; default to match the stride of 250 steps over [0,1]
|
322 |
+
- num_steps: total integration step of SDE
|
323 |
+
"""
|
324 |
+
|
325 |
+
if last_step is None:
|
326 |
+
last_step_size = 0.0
|
327 |
+
|
328 |
+
sde_drift, sde_diffusion = self.__get_sde_diffusion_and_drift(
|
329 |
+
diffusion_form=diffusion_form,
|
330 |
+
diffusion_norm=diffusion_norm,
|
331 |
+
)
|
332 |
+
|
333 |
+
t0, t1 = self.transport.check_interval(
|
334 |
+
self.transport.train_eps,
|
335 |
+
self.transport.sample_eps,
|
336 |
+
diffusion_form=diffusion_form,
|
337 |
+
sde=True,
|
338 |
+
eval=True,
|
339 |
+
reverse=False,
|
340 |
+
last_step_size=last_step_size,
|
341 |
+
)
|
342 |
+
|
343 |
+
_sde = sde(
|
344 |
+
sde_drift,
|
345 |
+
sde_diffusion,
|
346 |
+
t0=t0,
|
347 |
+
t1=t1,
|
348 |
+
num_steps=num_steps,
|
349 |
+
sampler_type=sampling_method,
|
350 |
+
)
|
351 |
+
|
352 |
+
last_step_fn = self.__get_last_step(sde_drift, last_step=last_step, last_step_size=last_step_size)
|
353 |
+
|
354 |
+
def _sample(init, model, **model_kwargs):
|
355 |
+
xs = _sde.sample(init, model, **model_kwargs)
|
356 |
+
ts = th.ones(init.size(0), device=init.device) * t1
|
357 |
+
x = last_step_fn(xs[-1], ts, model, **model_kwargs)
|
358 |
+
xs.append(x)
|
359 |
+
|
360 |
+
assert len(xs) == num_steps, "Samples does not match the number of steps"
|
361 |
+
|
362 |
+
return xs
|
363 |
+
|
364 |
+
return _sample
|
365 |
+
|
366 |
+
def sample_dpm(
|
367 |
+
self,
|
368 |
+
model,
|
369 |
+
model_kwargs=None,
|
370 |
+
):
|
371 |
+
|
372 |
+
noise_schedule = NoiseScheduleFlow(schedule="discrete_flow")
|
373 |
+
|
374 |
+
def noise_pred_fn(x, t_continuous):
|
375 |
+
output = model(x, 1 - t_continuous, **model_kwargs)
|
376 |
+
_, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
377 |
+
try:
|
378 |
+
noise = x - (1 - expand_dims(sigma_t, x.dim()).to(x)) * output
|
379 |
+
except:
|
380 |
+
noise = x - (1 - expand_dims(sigma_t, x.dim()).to(x)) * output[0]
|
381 |
+
return noise
|
382 |
+
|
383 |
+
return DPM_Solver(noise_pred_fn, noise_schedule, algorithm_type="dpmsolver++").sample
|
384 |
+
|
385 |
+
|
386 |
+
def sample_ode(
|
387 |
+
self,
|
388 |
+
*,
|
389 |
+
sampling_method="dopri5",
|
390 |
+
num_steps=50,
|
391 |
+
atol=1e-6,
|
392 |
+
rtol=1e-3,
|
393 |
+
reverse=False,
|
394 |
+
do_shift=False,
|
395 |
+
time_shifting_factor=None,
|
396 |
+
):
|
397 |
+
"""returns a sampling function with given ODE settings
|
398 |
+
Args:
|
399 |
+
- sampling_method: type of sampler used in solving the ODE; default to be Dopri5
|
400 |
+
- num_steps:
|
401 |
+
- fixed solver (Euler, Heun): the actual number of integration steps performed
|
402 |
+
- adaptive solver (Dopri5): the number of datapoints saved during integration; produced by interpolation
|
403 |
+
- atol: absolute error tolerance for the solver
|
404 |
+
- rtol: relative error tolerance for the solver
|
405 |
+
"""
|
406 |
+
|
407 |
+
# for flux
|
408 |
+
drift = lambda x, t, model, **kwargs: self.drift(x, t, model, **kwargs)
|
409 |
+
|
410 |
+
t0, t1 = self.transport.check_interval(
|
411 |
+
self.transport.train_eps,
|
412 |
+
self.transport.sample_eps,
|
413 |
+
sde=False,
|
414 |
+
eval=True,
|
415 |
+
reverse=reverse,
|
416 |
+
last_step_size=0.0,
|
417 |
+
)
|
418 |
+
|
419 |
+
_ode = ode(
|
420 |
+
drift=drift,
|
421 |
+
t0=t0,
|
422 |
+
t1=t1,
|
423 |
+
sampler_type=sampling_method,
|
424 |
+
num_steps=num_steps,
|
425 |
+
atol=atol,
|
426 |
+
rtol=rtol,
|
427 |
+
do_shift=do_shift,
|
428 |
+
time_shifting_factor=time_shifting_factor,
|
429 |
+
)
|
430 |
+
|
431 |
+
return _ode.sample
|
432 |
+
|
433 |
+
def sample_ode_likelihood(
|
434 |
+
self,
|
435 |
+
*,
|
436 |
+
sampling_method="dopri5",
|
437 |
+
num_steps=50,
|
438 |
+
atol=1e-6,
|
439 |
+
rtol=1e-3,
|
440 |
+
):
|
441 |
+
"""returns a sampling function for calculating likelihood with given ODE settings
|
442 |
+
Args:
|
443 |
+
- sampling_method: type of sampler used in solving the ODE; default to be Dopri5
|
444 |
+
- num_steps:
|
445 |
+
- fixed solver (Euler, Heun): the actual number of integration steps performed
|
446 |
+
- adaptive solver (Dopri5): the number of datapoints saved during integration; produced by interpolation
|
447 |
+
- atol: absolute error tolerance for the solver
|
448 |
+
- rtol: relative error tolerance for the solver
|
449 |
+
"""
|
450 |
+
|
451 |
+
def _likelihood_drift(x, t, model, **model_kwargs):
|
452 |
+
x, _ = x
|
453 |
+
eps = th.randint(2, x.size(), dtype=th.float, device=x.device) * 2 - 1
|
454 |
+
t = th.ones_like(t) * (1 - t)
|
455 |
+
with th.enable_grad():
|
456 |
+
x.requires_grad = True
|
457 |
+
grad = th.autograd.grad(th.sum(self.drift(x, t, model, **model_kwargs) * eps), x)[0]
|
458 |
+
logp_grad = th.sum(grad * eps, dim=tuple(range(1, len(x.size()))))
|
459 |
+
drift = self.drift(x, t, model, **model_kwargs)
|
460 |
+
return (-drift, logp_grad)
|
461 |
+
|
462 |
+
t0, t1 = self.transport.check_interval(
|
463 |
+
self.transport.train_eps,
|
464 |
+
self.transport.sample_eps,
|
465 |
+
sde=False,
|
466 |
+
eval=True,
|
467 |
+
reverse=False,
|
468 |
+
last_step_size=0.0,
|
469 |
+
)
|
470 |
+
|
471 |
+
_ode = ode(
|
472 |
+
drift=_likelihood_drift,
|
473 |
+
t0=t0,
|
474 |
+
t1=t1,
|
475 |
+
sampler_type=sampling_method,
|
476 |
+
num_steps=num_steps,
|
477 |
+
atol=atol,
|
478 |
+
rtol=rtol,
|
479 |
+
)
|
480 |
+
|
481 |
+
def _sample_fn(x, model, **model_kwargs):
|
482 |
+
init_logp = th.zeros(x.size(0)).to(x)
|
483 |
+
input = (x, init_logp)
|
484 |
+
drift, delta_logp = _ode.sample(input, model, **model_kwargs)
|
485 |
+
drift, delta_logp = drift[-1], delta_logp[-1]
|
486 |
+
prior_logp = self.transport.prior_logp(drift)
|
487 |
+
logp = prior_logp - delta_logp
|
488 |
+
return logp, drift
|
489 |
+
|
490 |
+
return _sample_fn
|
transport/utils.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch as th
|
2 |
+
import math
|
3 |
+
|
4 |
+
class EasyDict:
|
5 |
+
def __init__(self, sub_dict):
|
6 |
+
for k, v in sub_dict.items():
|
7 |
+
setattr(self, k, v)
|
8 |
+
|
9 |
+
def __getitem__(self, key):
|
10 |
+
return getattr(self, key)
|
11 |
+
|
12 |
+
|
13 |
+
def mean_flat(x):
|
14 |
+
"""
|
15 |
+
Take the mean over all non-batch dimensions.
|
16 |
+
"""
|
17 |
+
return th.mean(x, dim=list(range(1, len(x.size()))))
|
18 |
+
|
19 |
+
|
20 |
+
def log_state(state):
|
21 |
+
result = []
|
22 |
+
|
23 |
+
sorted_state = dict(sorted(state.items()))
|
24 |
+
for key, value in sorted_state.items():
|
25 |
+
# Check if the value is an instance of a class
|
26 |
+
if "<object" in str(value) or "object at" in str(value):
|
27 |
+
result.append(f"{key}: [{value.__class__.__name__}]")
|
28 |
+
else:
|
29 |
+
result.append(f"{key}: {value}")
|
30 |
+
|
31 |
+
return "\n".join(result)
|
32 |
+
|
33 |
+
def time_shift(mu: float, sigma: float, t: th.Tensor):
|
34 |
+
# the following implementation was original for t=0: clean / t=1: noise
|
35 |
+
# Since we adopt the reverse, the 1-t operations are needed
|
36 |
+
t = 1 - t
|
37 |
+
t = math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
38 |
+
t = 1 - t
|
39 |
+
return t
|
40 |
+
|
41 |
+
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15):
|
42 |
+
m = (y2 - y1) / (x2 - x1)
|
43 |
+
b = y1 - m * x1
|
44 |
+
return lambda x: m * x + b
|
45 |
+
|
46 |
+
def expand_dims(v, dims):
|
47 |
+
"""
|
48 |
+
Expand the tensor `v` to the dim `dims`.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
`v`: a PyTorch tensor with shape [N].
|
52 |
+
`dim`: a `int`.
|
53 |
+
Returns:
|
54 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
55 |
+
"""
|
56 |
+
return v[(...,) + (None,) * (dims - 1)]
|