Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,6 @@ subprocess.run(
|
|
17 |
shell=True,
|
18 |
)
|
19 |
|
20 |
-
|
21 |
os.makedirs("/home/user/app/checkpoints", exist_ok=True)
|
22 |
from huggingface_hub import snapshot_download
|
23 |
snapshot_download(
|
@@ -51,7 +50,6 @@ import models
|
|
51 |
from transport import Sampler, create_transport
|
52 |
|
53 |
from multiprocessing import Process,Queue,set_start_method,get_context
|
54 |
-
#set_start_method('fork')
|
55 |
|
56 |
class ModelFailure:
|
57 |
pass
|
@@ -110,11 +108,6 @@ def model_main(args, master_port, rank):
|
|
110 |
# Override the built-in print with the new version
|
111 |
builtins.print = print
|
112 |
|
113 |
-
# os.environ["MASTER_PORT"] = str(master_port)
|
114 |
-
# os.environ["MASTER_ADDR"] = "127.0.0.1"
|
115 |
-
# os.environ["RANK"] = str(rank)
|
116 |
-
# os.environ["WORLD_SIZE"] = str(args.num_gpus)
|
117 |
-
|
118 |
|
119 |
train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
|
120 |
print("Loaded model arguments:", json.dumps(train_args.__dict__, indent=2))
|
@@ -307,16 +300,13 @@ def inference(args, infer_args, text_encoder, tokenizer, vae, model):
|
|
307 |
samples = (samples + 1.0) / 2.0
|
308 |
samples.clamp_(0.0, 1.0)
|
309 |
|
310 |
-
img = to_pil_image(samples[0
|
311 |
print("> generated image, done.")
|
312 |
|
313 |
-
# if response_queue is not None:
|
314 |
-
# response_queue.put((img, metadata))
|
315 |
return img, metadata
|
316 |
except Exception:
|
317 |
print(traceback.format_exc())
|
318 |
return ModelFailure()
|
319 |
-
# response_queue.put(ModelFailure())
|
320 |
|
321 |
|
322 |
def none_or_str(value):
|
@@ -402,38 +392,11 @@ def main():
|
|
402 |
raise NotImplementedError("Multi-GPU Inference is not yet supported")
|
403 |
|
404 |
master_port = find_free_port()
|
405 |
-
#mp.set_start_method("fork")
|
406 |
-
# processes = []
|
407 |
-
# request_queues = []
|
408 |
-
# response_queue = mp.Queue()
|
409 |
-
# mp_barrier = mp.Barrier(args.num_gpus + 1)
|
410 |
-
# for i in range(args.num_gpus):
|
411 |
-
# request_queues.append(mp.Queue())
|
412 |
-
# p = mp.Process(
|
413 |
-
# target=model_main,
|
414 |
-
# args=(
|
415 |
-
# args,
|
416 |
-
# master_port,
|
417 |
-
# i,
|
418 |
-
# request_queues[i],
|
419 |
-
# response_queue if i == 0 else None,
|
420 |
-
# mp_barrier,
|
421 |
-
# ),
|
422 |
-
# )
|
423 |
-
# p.start()
|
424 |
-
# processes.append(p)
|
425 |
|
426 |
text_encoder, tokenizer, vae, model = model_main(args, master_port, 0)
|
427 |
|
428 |
-
description =
|
429 |
-
#"""
|
430 |
-
# Lumina Next Text-to-Image
|
431 |
-
|
432 |
-
#Lumina-Next-T2I is a 2B Next-DiT model with 2B text encoder.
|
433 |
-
|
434 |
-
#Demo current model: `Lumina-Next-T2I`
|
435 |
|
436 |
-
#"""
|
437 |
with gr.Blocks() as demo:
|
438 |
with gr.Row():
|
439 |
gr.Markdown(description)
|
@@ -568,13 +531,7 @@ def main():
|
|
568 |
) # noqa
|
569 |
|
570 |
@spaces.GPU(duration=200)
|
571 |
-
def on_submit(*infer_args):
|
572 |
-
# for q in request_queues:
|
573 |
-
# q.put(args)
|
574 |
-
# result = response_queue.get()
|
575 |
-
# if isinstance(result, ModelFailure):
|
576 |
-
# raise RuntimeError
|
577 |
-
# img, metadata = result
|
578 |
result = inference(args, infer_args, text_encoder, tokenizer, vae, model)
|
579 |
if isinstance(result, ModelFailure):
|
580 |
raise RuntimeError("Model failed to generate the image.")
|
|
|
17 |
shell=True,
|
18 |
)
|
19 |
|
|
|
20 |
os.makedirs("/home/user/app/checkpoints", exist_ok=True)
|
21 |
from huggingface_hub import snapshot_download
|
22 |
snapshot_download(
|
|
|
50 |
from transport import Sampler, create_transport
|
51 |
|
52 |
from multiprocessing import Process,Queue,set_start_method,get_context
|
|
|
53 |
|
54 |
class ModelFailure:
|
55 |
pass
|
|
|
108 |
# Override the built-in print with the new version
|
109 |
builtins.print = print
|
110 |
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
|
113 |
print("Loaded model arguments:", json.dumps(train_args.__dict__, indent=2))
|
|
|
300 |
samples = (samples + 1.0) / 2.0
|
301 |
samples.clamp_(0.0, 1.0)
|
302 |
|
303 |
+
img = to_pil_image(samples[0].float())
|
304 |
print("> generated image, done.")
|
305 |
|
|
|
|
|
306 |
return img, metadata
|
307 |
except Exception:
|
308 |
print(traceback.format_exc())
|
309 |
return ModelFailure()
|
|
|
310 |
|
311 |
|
312 |
def none_or_str(value):
|
|
|
392 |
raise NotImplementedError("Multi-GPU Inference is not yet supported")
|
393 |
|
394 |
master_port = find_free_port()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
text_encoder, tokenizer, vae, model = model_main(args, master_port, 0)
|
397 |
|
398 |
+
description = "Lumina-Image 2.0 ([Github](https://github.com/Alpha-VLLM/Lumina-Image-2.0/tree/main))"
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
|
|
400 |
with gr.Blocks() as demo:
|
401 |
with gr.Row():
|
402 |
gr.Markdown(description)
|
|
|
531 |
) # noqa
|
532 |
|
533 |
@spaces.GPU(duration=200)
|
534 |
+
def on_submit(*infer_args, progress=gr.Progress(track_tqdm=True),):
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
result = inference(args, infer_args, text_encoder, tokenizer, vae, model)
|
536 |
if isinstance(result, ModelFailure):
|
537 |
raise RuntimeError("Model failed to generate the image.")
|