Dakerqi commited on
Commit
351b6ed
·
verified ·
1 Parent(s): 7c7d0d7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -18,7 +18,7 @@ snapshot_download(
18
  repo_id="Alpha-VLLM/Lumina-Image-2.0", local_dir="/home/user/app/checkpoints"
19
  )
20
 
21
-
22
 
23
  import argparse
24
  import os
@@ -119,16 +119,16 @@ def model_main(args, master_port, rank, request_queue, response_queue, mp_barrie
119
  dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[args.precision]
120
 
121
  text_encoder = AutoModel.from_pretrained(
122
- gemma_path, torch_dtype=dtype, device_map="cuda", token=args.hf_token
123
  ).eval()
124
  cap_feat_dim = text_encoder.config.hidden_size
125
  if args.num_gpus > 1:
126
  raise NotImplementedError("Inference with >1 GPUs not yet supported")
127
 
128
- tokenizer = AutoTokenizer.from_pretrained(gemma_path, token=args.hf_token)
129
  tokenizer.padding_side = "right"
130
 
131
- vae = AutoencoderKL.from_pretrained(flux_path, subfolder="vae", token=args.hf_token).cuda()
132
 
133
  print(f"Creating DiT: {train_args.model}")
134
 
 
18
  repo_id="Alpha-VLLM/Lumina-Image-2.0", local_dir="/home/user/app/checkpoints"
19
  )
20
 
21
+ hf_token = os.environ["HF_TOKEN"]
22
 
23
  import argparse
24
  import os
 
119
  dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[args.precision]
120
 
121
  text_encoder = AutoModel.from_pretrained(
122
+ "google/gemma-2-2b", torch_dtype=dtype, device_map="cuda", token=hf_token
123
  ).eval()
124
  cap_feat_dim = text_encoder.config.hidden_size
125
  if args.num_gpus > 1:
126
  raise NotImplementedError("Inference with >1 GPUs not yet supported")
127
 
128
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b", token=hf_token)
129
  tokenizer.padding_side = "right"
130
 
131
+ vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", token=hf_token).cuda()
132
 
133
  print(f"Creating DiT: {train_args.model}")
134