File size: 22,733 Bytes
03990e9
 
 
 
 
 
 
 
c8ebd5b
03990e9
 
c8ebd5b
03990e9
 
 
 
c8ebd5b
03990e9
 
c8ebd5b
03990e9
 
 
c8ebd5b
03990e9
 
c8ebd5b
03990e9
 
c8ebd5b
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
c8ebd5b
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ebd5b
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ebd5b
03990e9
c8ebd5b
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ebd5b
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ebd5b
03990e9
 
 
 
 
 
c8ebd5b
 
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ebd5b
 
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ebd5b
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ebd5b
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ebd5b
 
03990e9
c8ebd5b
03990e9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import argparse
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = '7'
import builtins
import json
import math
import multiprocessing as mp
import os
import random
import socket
import traceback

#import fairscale.nn.model_parallel.initialize as fs_init
import gradio as gr
import numpy as np
from safetensors.torch import load_file
import torch
#i#mport torch.distributed as dist
from torchvision.transforms.functional import to_pil_image

from imgproc import generate_crop_size_list
import models
from transport import Sampler, create_transport

from multiprocessing import Process,Queue,set_start_method,get_context
#set_start_method('fork')

class ModelFailure:
    pass

gemma_path = "./gemma-2-2b"
#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
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(prompt_batch, text_encoder, tokenizer, proportion_empty_prompts, is_train=True):
    captions = []
    for caption in prompt_batch:
        if random.random() < proportion_empty_prompts:
            captions.append("")
        elif isinstance(caption, str):
            captions.append(caption)
        elif isinstance(caption, (list, np.ndarray)):
            # take a random caption if there are multiple
            captions.append(random.choice(caption) if is_train else caption[0])

    with torch.no_grad():
        text_inputs = tokenizer(
            captions,
            padding=True,
            pad_to_multiple_of=8,
            max_length=256,
            truncation=True,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids
        prompt_masks = text_inputs.attention_mask

        prompt_embeds = text_encoder(
            input_ids=text_input_ids.cuda(),
            attention_mask=prompt_masks.cuda(),
            output_hidden_states=True,
        ).hidden_states[-2]

    return prompt_embeds, prompt_masks


@torch.no_grad()
def model_main(args, master_port, rank, request_queue, response_queue, mp_barrier):
    # import here to avoid huggingface Tokenizer parallelism warnings
    from diffusers.models import AutoencoderKL
    from transformers import AutoModel, AutoTokenizer

    # override the default print function since the delay can be large for child process
    original_print = builtins.print

    # Redefine the print function with flush=True by default
    def print(*args, **kwargs):
        kwargs.setdefault("flush", True)
        original_print(*args, **kwargs)

    # Override the built-in print with the new version
    builtins.print = print

    os.environ["MASTER_PORT"] = str(master_port)
    os.environ["MASTER_ADDR"] = "127.0.0.1"
    os.environ["RANK"] = str(rank)
    os.environ["WORLD_SIZE"] = str(args.num_gpus)


    train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
    print("Loaded model arguments:", json.dumps(train_args.__dict__, indent=2))

    print(f"Creating lm: Gemma-2-2B")

    dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[args.precision]

    text_encoder = AutoModel.from_pretrained(
        gemma_path, torch_dtype=dtype, device_map="cuda", token=args.hf_token
    ).eval()
    cap_feat_dim = text_encoder.config.hidden_size
    if args.num_gpus > 1:
        raise NotImplementedError("Inference with >1 GPUs not yet supported")

    tokenizer = AutoTokenizer.from_pretrained(gemma_path, token=args.hf_token)
    tokenizer.padding_side = "right"

    vae = AutoencoderKL.from_pretrained("./flux", subfolder="vae", token=args.hf_token).cuda()

    print(f"Creating DiT: {train_args.model}")

    model = models.__dict__[train_args.model](
        in_channels=16,
        qk_norm=train_args.qk_norm,
        cap_feat_dim=cap_feat_dim,
    )
    model.eval().to("cuda", dtype=dtype)

    assert train_args.model_parallel_size == args.num_gpus
    if args.ema:
        print("Loading ema model.")
    print('load model')
    ckpt_path = os.path.join(
        args.ckpt,
        f"consolidated{'_ema' if args.ema else ''}.{rank:02d}-of-{args.num_gpus:02d}.safetensors",
    )
    if os.path.exists(ckpt_path):
        ckpt = load_file(ckpt_path)
    else:
        ckpt_path = os.path.join(
            args.ckpt,
            f"consolidated{'_ema' if args.ema else ''}.{rank:02d}-of-{args.num_gpus:02d}.pth",
        )
        assert os.path.exists(ckpt_path)
        ckpt = torch.load(ckpt_path, map_location="cuda")
    model.load_state_dict(ckpt, strict=True)
    print('load model finish')
    mp_barrier.wait()

    with torch.autocast("cuda", dtype):
        while True:
            (
                cap,
                neg_cap,
                system_type,
                resolution,
                num_sampling_steps,
                cfg_scale,
                cfg_trunc,
                renorm_cfg,
                solver,
                t_shift,
                seed,
                scaling_method,
                scaling_watershed,
                proportional_attn,
            ) = request_queue.get()

           
            system_prompt = system_type
            cap = system_prompt + cap
            if neg_cap != "":
                neg_cap = system_prompt + neg_cap

            metadata = dict(
                real_cap=cap,
                real_neg_cap=neg_cap,
                system_type=system_type,
                resolution=resolution,
                num_sampling_steps=num_sampling_steps,
                cfg_scale=cfg_scale,
                cfg_trunc=cfg_trunc,
                renorm_cfg=renorm_cfg,
                solver=solver,
                t_shift=t_shift,
                seed=seed,
                scaling_method=scaling_method,
                scaling_watershed=scaling_watershed,
                proportional_attn=proportional_attn,
            )
            print("> params:", json.dumps(metadata, indent=2))

            try:
                # begin sampler
                if solver == "dpm":
                    transport = create_transport(
                    "Linear",
                    "velocity",
                    )
                    sampler = Sampler(transport)
                    sample_fn = sampler.sample_dpm(
                    model.forward_with_cfg,
                    model_kwargs=model_kwargs,
                    )
                else:
                    transport = create_transport(
                        args.path_type,
                        args.prediction,
                        args.loss_weight,
                        args.train_eps,
                        args.sample_eps,
                    )
                    sampler = Sampler(transport)
                    sample_fn = sampler.sample_ode(
                        sampling_method=solver,
                        num_steps=num_sampling_steps,
                        atol=args.atol,
                        rtol=args.rtol,
                        reverse=args.reverse,
                        time_shifting_factor=t_shift,
                    )  
                # end sampler

                resolution = resolution.split(" ")[-1]
                w, h = resolution.split("x")
                w, h = int(w), int(h)
                latent_w, latent_h = w // 8, h // 8
                if int(seed) != 0:
                    torch.random.manual_seed(int(seed))
                z = torch.randn([1, 16, latent_h, latent_w], device="cuda").to(dtype)
                z = z.repeat(2, 1, 1, 1)

                with torch.no_grad():
                    if neg_cap != "":
                        cap_feats, cap_mask = encode_prompt([cap] + [neg_cap], text_encoder, tokenizer, 0.0)
                    else:
                        cap_feats, cap_mask = encode_prompt([cap] + [""], text_encoder, tokenizer, 0.0)

                cap_mask = cap_mask.to(cap_feats.device)

                model_kwargs = dict(
                    cap_feats=cap_feats,
                    cap_mask=cap_mask,
                    cfg_scale=cfg_scale,
                    cfg_trunc=1 - cfg_trunc,
                    renorm_cfg=renorm_cfg,
                )

                #if dist.get_rank() == 0:
                print(f"> caption: {cap}")
                print(f"> num_sampling_steps: {num_sampling_steps}")
                print(f"> cfg_scale: {cfg_scale}")
                print("> start sample")
                if solver == "dpm":
                    samples = sample_fn(z, steps=num_sampling_steps, order=2, skip_type="time_uniform_flow", method="multistep", flow_shift=t_shift)
                else:
                    samples = sample_fn(z, model.forward_with_cfg, **model_kwargs)[-1]
                samples = samples[:1]
                print("smaple_dtype", samples.dtype)

                vae_scale = {
                    "sdxl": 0.13025,
                    "sd3": 1.5305,
                    "ema": 0.18215,
                    "mse": 0.18215,
                    "cogvideox": 1.15258426,
                    "flux": 0.3611,
                }["flux"]
                vae_shift = {
                    "sdxl": 0.0,
                    "sd3": 0.0609,
                    "ema": 0.0,
                    "mse": 0.0,
                    "cogvideox": 0.0,
                    "flux": 0.1159,
                }["flux"]
                print(f"> vae scale: {vae_scale}, shift: {vae_shift}")
                print("samples.shape", samples.shape)
                samples = vae.decode(samples / vae_scale + vae_shift).sample
                samples = (samples + 1.0) / 2.0
                samples.clamp_(0.0, 1.0)

                img = to_pil_image(samples[0, :].float())
                print("> generated image, done.")

                if response_queue is not None:
                    response_queue.put((img, metadata))

            except Exception:
                print(traceback.format_exc())
                response_queue.put(ModelFailure())


def none_or_str(value):
    if value == "None":
        return None
    return value


def parse_transport_args(parser):
    group = parser.add_argument_group("Transport arguments")
    group.add_argument(
        "--path-type",
        type=str,
        default="Linear",
        choices=["Linear", "GVP", "VP"],
        help="the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).",
    )
    group.add_argument(
        "--prediction",
        type=str,
        default="velocity",
        choices=["velocity", "score", "noise"],
        help="the prediction model for the transport dynamics.",
    )
    group.add_argument(
        "--loss-weight",
        type=none_or_str,
        default=None,
        choices=[None, "velocity", "likelihood"],
        help="the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weighting.",
    )
    group.add_argument("--sample-eps", type=float, help="sampling in the transport model.")
    group.add_argument("--train-eps", type=float, help="training to stabilize the learning process.")


def parse_ode_args(parser):
    group = parser.add_argument_group("ODE arguments")
    group.add_argument(
        "--atol",
        type=float,
        default=1e-6,
        help="Absolute tolerance for the ODE solver.",
    )
    group.add_argument(
        "--rtol",
        type=float,
        default=1e-3,
        help="Relative tolerance for the ODE solver.",
    )
    group.add_argument("--reverse", action="store_true", help="run the ODE solver in reverse.")
    group.add_argument(
        "--likelihood",
        action="store_true",
        help="Enable calculation of likelihood during the ODE solving process.",
    )


def find_free_port() -> int:
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    port = sock.getsockname()[1]
    sock.close()
    return port


def main():
    parser = argparse.ArgumentParser()

    parser.add_argument("--num_gpus", type=int, default=1)
    parser.add_argument("--ckpt", type=str,default='/home/ubuntu/zl/T2I/ckt_256_final/', required=False)
    parser.add_argument("--ema", action="store_true")
    parser.add_argument("--precision", default="bf16", choices=["bf16", "fp32"])
    parser.add_argument("--hf_token", type=str, default=None, help="huggingface read token for accessing gated repo.")
    parser.add_argument("--res", type=int, default=1024, choices=[256, 512, 1024])
    parser.add_argument("--port", type=int, default=100023)

    parse_transport_args(parser)
    parse_ode_args(parser)

    args = parser.parse_known_args()[0]

    if args.num_gpus != 1:
        raise NotImplementedError("Multi-GPU Inference is not yet supported")

    master_port = find_free_port()
    #mp.set_start_method("fork")
    processes = []
    request_queues = []
    response_queue = mp.Queue()
    mp_barrier = mp.Barrier(args.num_gpus + 1)
    for i in range(args.num_gpus):
        request_queues.append(mp.Queue())
        p = mp.Process(
            target=model_main,
            args=(
                args,
                master_port,
                i,
                request_queues[i],
                response_queue if i == 0 else None,
                mp_barrier,
            ),
        )
        p.start()
        processes.append(p)

    description = args.ckpt.split('/')[-1]
    #"""
    # Lumina Next Text-to-Image

    #Lumina-Next-T2I is a 2B Next-DiT model with 2B text encoder.

    #Demo current model: `Lumina-Next-T2I`

    #"""
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                cap = gr.Textbox(
                    lines=2,
                    label="Caption",
                    interactive=True,
                    value="Majestic landscape photograph of snow-capped mountains under a dramatic sky at sunset. The mountains dominate the lower half of the image, with rugged peaks and deep crevasses visible. A glacier flows down the right side, partially illuminated by the warm light. The sky is filled with fiery orange and golden clouds, contrasting with the cool tones of the snow. The central peak is partially obscured by clouds, adding a sense of mystery. The foreground features dark, shadowed forested areas, enhancing the depth. High contrast, natural lighting, warm color palette, photorealistic, expansive, awe-inspiring, serene, visually balanced, dynamic composition.",
                    placeholder="Enter a caption.",
                )
                neg_cap = gr.Textbox(
                    lines=2,
                    label="Negative Caption",
                    interactive=True,
                    value="",
                    placeholder="Enter a negative caption.",
                )
                default_value = "You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts."
                system_type = gr.Dropdown(
                    value=default_value,
                    choices=[
                       "You are an assistant designed to generate high-quality images with the highest degree of image-text alignment based on textual prompts.",
                        "You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts.",
                        "",
                                            ],
                    label="System Type",
                )

                with gr.Row():
                    res_choices = [f"{w}x{h}" for w, h in generate_crop_size_list((args.res // 64) ** 2, 64)]
                    default_value = "1024x1024"  # Set the default value to 256x256
                    
                    resolution = gr.Dropdown(
                        value=default_value, choices=res_choices, label="Resolution"
                    )
                with gr.Row():
                    num_sampling_steps = gr.Slider(
                        minimum=1,
                        maximum=70,
                        value=18,
                        step=1,
                        interactive=True,
                        label="Sampling steps",
                    )
                    seed = gr.Slider(
                        minimum=0,
                        maximum=int(1e5),
                        value=0,
                        step=1,
                        interactive=True,
                        label="Seed (0 for random)",
                    )
                    cfg_trunc = gr.Slider(
                        minimum=0,
                        maximum=1,
                        value=0,
                        step=0.01,
                        interactive=True,
                        label="CFG Truncation",
                    )
                with gr.Row():
                    solver = gr.Dropdown(
                        value="midpoint",
                        choices=["euler", "midpoint", "rk4"],
                        label="solver",
                    )
                    t_shift = gr.Slider(
                        minimum=1,
                        maximum=20,
                        value=6,
                        step=1,
                        interactive=True,
                        label="Time shift",
                    )
                    cfg_scale = gr.Slider(
                        minimum=1.0,
                        maximum=20.0,
                        value=4.0,
                        interactive=True,
                        label="CFG scale",
                    )
                with gr.Row():
                     renorm_cfg = gr.Dropdown(
                        value=True,
                        choices=[True, False, 2.0],
                        label="CFG Renorm",
                    )
                with gr.Accordion("Advanced Settings for Resolution Extrapolation", open=False):
                    with gr.Row():
                        scaling_method = gr.Dropdown(
                            value="Time-aware",
                            choices=["Time-aware", "None"],
                            label="RoPE scaling method",
                        )
                        scaling_watershed = gr.Slider(
                            minimum=0.0,
                            maximum=1.0,
                            value=0.3,
                            interactive=True,
                            label="Linear/NTK watershed",
                        )
                    with gr.Row():
                        proportional_attn = gr.Checkbox(
                            value=True,
                            interactive=True,
                            label="Proportional attention",
                        )
                with gr.Row():
                    submit_btn = gr.Button("Submit", variant="primary")
            with gr.Column():
                output_img = gr.Image(
                    label="Generated image",
                    interactive=False,
                )
                with gr.Accordion(label="Generation Parameters", open=True):
                    gr_metadata = gr.JSON(label="metadata", show_label=False)

        with gr.Row():
           
            prompts=[ "Close-up portrait of a young woman with light brown hair, looking to the right, illuminated by warm, golden sunlight. Her hair is gently tousled, catching the light and creating a halo effect around her head. She wears a white garment with a V-neck, visible in the lower left of the frame. The background is dark and out of focus, enhancing the contrast between her illuminated face and the shadows. Soft, ethereal lighting, high contrast, warm color palette, shallow depth of field, natural backlighting, serene and contemplative mood, cinematic quality, intimate and visually striking composition.",
                     "一个剑客,武侠风,红色腰带,戴着斗笠,低头,盖住眼睛,白色背景,细致,精品,杰作,水墨画,墨烟,墨云,泼墨,色带,墨水,墨黑白莲花,光影艺术,笔触。",
                     "Aesthetic photograph of a bouquet of pink and white ranunculus flowers in a clear glass vase, centrally positioned on a wooden surface. The flowers are in full bloom, displaying intricate layers of petals with a soft gradient from pale pink to white. The vase is filled with water, visible through the clear glass, and the stems are submerged. In the background, a blurred vase with green stems is partially visible, adding depth to the composition. The lighting is warm and natural, casting soft shadows and highlighting the delicate textures of the petals. The scene is serene and intimate, with a focus on the organic beauty of the flowers. Photorealistic, shallow depth of field, soft natural lighting, warm color palette, high contrast, glossy texture, tranquil, visually balanced.",
                     "一只优雅的白猫穿着一件紫色的旗袍,旗袍上绣有精致的牡丹花图案,显得高贵典雅。它头上戴着一朵金色的发饰,嘴里叼着一根象征好运的红色丝带。周围环绕着许多飘动的纸鹤和金色的光点,营造出一种祥瑞和梦幻的氛围。超写实风格。"
                ]
            prompts = [[_] for _ in prompts]
            gr.Examples(  # noqa
                prompts,
                [cap],
                label="Examples",
            )  # noqa

        def on_submit(*args):
            for q in request_queues:
                q.put(args)
            result = response_queue.get()
            if isinstance(result, ModelFailure):
                raise RuntimeError
            img, metadata = result

            return img, metadata

        submit_btn.click(
            on_submit,
            [
                cap,
                neg_cap,
                system_type,
                resolution,
                num_sampling_steps,
                cfg_scale,
                cfg_trunc,
                renorm_cfg,
                solver,
                t_shift,
                seed,
                scaling_method,
                scaling_watershed,
                proportional_attn,
            ],
            [output_img, gr_metadata],
        )

        def show_scaling_watershed(scaling_m):
            return gr.update(visible=scaling_m == "Time-aware")

        scaling_method.change(show_scaling_watershed, scaling_method, scaling_watershed)

    mp_barrier.wait()
    demo.queue().launch(share=True,
        server_name="0.0.0.0", server_port=args.port
    )


if __name__ == "__main__":
    mp.set_start_method("fork")
    main()