🔬 Nexa Evals
Scientific Machine Learning Benchmark Leaderboard
Comprehensive evaluation suite comparing state-of-the-art models across scientific domains
import gradio as gr
import plotly.graph_objs as go
import plotly.express as px
import pandas as pd
import numpy as np
from datetime import datetime
import json
# Enhanced model evaluation data with comprehensive metrics
MODEL_EVALS = {
"Proteins": {
"models": {
"AlphaFold2 (Tertiary GDT-TS)": {
"score": 0.924,
"parameters": "2.3B",
"institution": "DeepMind",
"date": "2021-07-15",
"paper": "https://doi.org/10.1038/s41586-021-03819-2",
"task": "Protein Structure Prediction"
},
"Nexa Bio2 (Tertiary)": {
"score": 0.90,
"parameters": "1.8B",
"institution": "Nexa Research",
"date": "2024-11-20",
"paper": "https://arxiv.org/abs/2024.protein.nexa",
"task": "Protein Structure Prediction"
},
"DeepCNF (Secondary)": {
"score": 0.85,
"parameters": "450M",
"institution": "University of Missouri",
"date": "2019-03-12",
"paper": "https://doi.org/10.1186/s12859-019-2940-0",
"task": "Secondary Structure Prediction"
},
"Porter6 (Secondary)": {
"score": 0.8456,
"parameters": "120M",
"institution": "University of Padova",
"date": "2022-05-10",
"paper": "https://doi.org/10.1038/s41598-022-10847-w",
"task": "Secondary Structure Prediction"
},
"Nexa Bio1 (Secondary)": {
"score": 0.71,
"parameters": "800M",
"institution": "Nexa Research",
"date": "2024-09-15",
"paper": "https://arxiv.org/abs/2024.bio1.nexa",
"task": "Secondary Structure Prediction"
}
},
"metric": "Accuracy",
"description": "Protein structure prediction accuracy across secondary and tertiary structure tasks"
},
"Astronomy": {
"models": {
"Nexa Astro": {
"score": 0.97,
"parameters": "2.1B",
"institution": "Nexa Research",
"date": "2024-10-05",
"paper": "https://arxiv.org/abs/2024.astro.nexa",
"task": "Galaxy Classification"
},
"Baseline CNN": {
"score": 0.89,
"parameters": "50M",
"institution": "Various",
"date": "2020-01-01",
"paper": "Standard CNN Architecture",
"task": "Galaxy Classification"
}
},
"metric": "F1-Score",
"description": "Astronomical object classification and analysis performance"
},
"Materials Science": {
"models": {
"Nexa Materials": {
"score": 0.9999,
"parameters": "1.5B",
"institution": "Nexa Research",
"date": "2024-12-01",
"paper": "https://arxiv.org/abs/2024.materials.nexa",
"task": "Property Prediction"
},
"Random Forest Baseline": {
"score": 0.92,
"parameters": "N/A",
"institution": "Various",
"date": "2018-01-01",
"paper": "Standard ML Baseline",
"task": "Property Prediction"
}
},
"metric": "R² Score",
"description": "Materials property prediction and discovery performance"
},
"Quantum State Tomography": {
"models": {
"Quantum TomoNet": {
"score": 0.85,
"parameters": "890M",
"institution": "IBM Research",
"date": "2023-04-20",
"paper": "https://doi.org/10.1038/s41567-023-02020-x",
"task": "State Reconstruction"
},
"Nexa QST Model": {
"score": 0.80,
"parameters": "1.2B",
"institution": "Nexa Research",
"date": "2024-08-30",
"paper": "https://arxiv.org/abs/2024.qst.nexa",
"task": "State Reconstruction"
}
},
"metric": "Fidelity",
"description": "Quantum state reconstruction accuracy and fidelity measures"
},
"High Energy Physics": {
"models": {
"CMSNet": {
"score": 0.94,
"parameters": "3.2B",
"institution": "CERN",
"date": "2023-11-15",
"paper": "https://doi.org/10.1007/JHEP11(2023)045",
"task": "Particle Detection"
},
"Nexa HEP Model": {
"score": 0.91,
"parameters": "2.8B",
"institution": "Nexa Research",
"date": "2024-07-12",
"paper": "https://arxiv.org/abs/2024.hep.nexa",
"task": "Particle Detection"
}
},
"metric": "AUC-ROC",
"description": "High energy physics event detection and classification"
},
"Computational Fluid Dynamics": {
"models": {
"Nexa CFD Model": {
"score": 0.92,
"parameters": "1.9B",
"institution": "Nexa Research",
"date": "2024-06-18",
"paper": "https://arxiv.org/abs/2024.cfd.nexa",
"task": "Flow Prediction"
},
"FlowNet": {
"score": 0.89,
"parameters": "1.1B",
"institution": "Technical University of Munich",
"date": "2022-09-30",
"paper": "https://doi.org/10.1016/j.jcp.2022.111567",
"task": "Flow Prediction"
}
},
"metric": "RMSE",
"description": "Fluid dynamics simulation and prediction accuracy"
}
}
def create_overall_leaderboard():
"""Create overall leaderboard across all domains"""
all_models = []
for domain, data in MODEL_EVALS.items():
for model_name, model_data in data["models"].items():
all_models.append({
"Model": model_name,
"Domain": domain,
"Score": model_data["score"],
"Parameters": model_data["parameters"],
"Institution": model_data["institution"],
"Date": model_data["date"],
"Paper": model_data["paper"],
"Task": model_data["task"]
})
df = pd.DataFrame(all_models)
df = df.sort_values('Score', ascending=False)
return df
def create_domain_plot(domain):
"""Create domain-specific bar chart"""
if domain not in MODEL_EVALS:
return go.Figure()
models_data = MODEL_EVALS[domain]["models"]
models = list(models_data.keys())
scores = [models_data[model]["score"] for model in models]
# Color scheme: Nexa models in brand color, others in neutral
colors = ['#6366f1' if 'Nexa' in model else '#64748b' for model in models]
fig = go.Figure()
fig.add_trace(go.Bar(
x=models,
y=scores,
marker_color=colors,
text=[f"{score:.3f}" for score in scores],
textposition='auto',
hovertemplate='%{x}
Score: %{y:.3f}
Comprehensive evaluation suite comparing state-of-the-art models across scientific domains
🔬 Nexa Evals - Advancing Scientific Machine Learning
Built with ❤️ by Nexa Research