Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,40 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import plotly.graph_objects as go
|
| 3 |
-
import
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"LLM (General OSIR)": {
|
| 8 |
"Nexa Mistral Sci-7B": 0.61,
|
| 9 |
"Llama-3-8B-Instruct": 0.39,
|
|
@@ -22,9 +53,9 @@ MODEL_EVALS = {
|
|
| 22 |
},
|
| 23 |
}
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
def
|
| 27 |
-
sorted_items = sorted(
|
| 28 |
models, scores = zip(*sorted_items)
|
| 29 |
|
| 30 |
fig = go.Figure()
|
|
@@ -32,12 +63,12 @@ def plot_domain(domain):
|
|
| 32 |
x=scores,
|
| 33 |
y=models,
|
| 34 |
orientation='h',
|
| 35 |
-
marker_color=
|
| 36 |
))
|
| 37 |
|
| 38 |
fig.update_layout(
|
| 39 |
-
title=f"Model
|
| 40 |
-
xaxis_title="
|
| 41 |
yaxis_title="Model",
|
| 42 |
xaxis_range=[0, 1.0],
|
| 43 |
template="plotly_white",
|
|
@@ -46,49 +77,68 @@ def plot_domain(domain):
|
|
| 46 |
)
|
| 47 |
return fig
|
| 48 |
|
| 49 |
-
#
|
| 50 |
-
def
|
| 51 |
-
if
|
| 52 |
-
return
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
#
|
| 56 |
with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #fafafa;}") as demo:
|
| 57 |
gr.Markdown("""
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
""")
|
| 61 |
|
| 62 |
-
with gr.
|
| 63 |
-
with gr.
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
with gr.
|
| 69 |
-
gr.
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
gr.Markdown("""
|
| 79 |
---
|
| 80 |
### ℹ️ About
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
-
|
| 84 |
-
|
| 85 |
-
- Hypothesis framing
|
| 86 |
-
- Domain grounding & math logic
|
| 87 |
-
- Scientific utility (overall use to researchers)
|
| 88 |
-
|
| 89 |
-
This leaderboard includes Nexa's adapters and comparisons to general-purpose LLMs like GPT-4o, Claude 3, and open-source Mistral / LLaMA.
|
| 90 |
""")
|
| 91 |
|
| 92 |
-
leaderboard_plot.render()
|
| 93 |
-
|
| 94 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import plotly.graph_objects as go
|
| 3 |
+
import json
|
| 4 |
|
| 5 |
+
# Data for tabular models
|
| 6 |
+
TABULAR_MODEL_EVALS = {
|
| 7 |
+
"Proteins": {
|
| 8 |
+
"Nexa Bio1 (Secondary)": 0.71,
|
| 9 |
+
"Porter6 (Secondary)": 0.8456,
|
| 10 |
+
"DeepCNF (Secondary)": 0.85,
|
| 11 |
+
"AlphaFold2 (Tertiary GDT-TS)": 0.924,
|
| 12 |
+
"Nexa Bio2 (Tertiary)": 0.90,
|
| 13 |
+
},
|
| 14 |
+
"Astro": {
|
| 15 |
+
"Nexa Astro": 0.97,
|
| 16 |
+
"Baseline CNN": 0.89,
|
| 17 |
+
},
|
| 18 |
+
"Materials": {
|
| 19 |
+
"Nexa Materials": 0.9999,
|
| 20 |
+
"Random Forest Baseline": 0.92,
|
| 21 |
+
},
|
| 22 |
+
"QST": {
|
| 23 |
+
"Nexa PIN Model": 0.80,
|
| 24 |
+
"Quantum TomoNet": 0.85,
|
| 25 |
+
},
|
| 26 |
+
"HEP": {
|
| 27 |
+
"Nexa HEP Model": 0.91,
|
| 28 |
+
"CMSNet": 0.94,
|
| 29 |
+
},
|
| 30 |
+
"CFD": {
|
| 31 |
+
"Nexa CFD Model": 0.92,
|
| 32 |
+
"FlowNet": 0.89,
|
| 33 |
+
},
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
# Data for LLMs
|
| 37 |
+
LLM_MODEL_EVALS = {
|
| 38 |
"LLM (General OSIR)": {
|
| 39 |
"Nexa Mistral Sci-7B": 0.61,
|
| 40 |
"Llama-3-8B-Instruct": 0.39,
|
|
|
|
| 53 |
},
|
| 54 |
}
|
| 55 |
|
| 56 |
+
# Universal plotting function for horizontal bar charts
|
| 57 |
+
def plot_horizontal_bar(domain, data, color):
|
| 58 |
+
sorted_items = sorted(data.items(), key=lambda x: x[1], reverse=True)
|
| 59 |
models, scores = zip(*sorted_items)
|
| 60 |
|
| 61 |
fig = go.Figure()
|
|
|
|
| 63 |
x=scores,
|
| 64 |
y=models,
|
| 65 |
orientation='h',
|
| 66 |
+
marker_color=color,
|
| 67 |
))
|
| 68 |
|
| 69 |
fig.update_layout(
|
| 70 |
+
title=f"Model Benchmark Scores — {domain}",
|
| 71 |
+
xaxis_title="Score",
|
| 72 |
yaxis_title="Model",
|
| 73 |
xaxis_range=[0, 1.0],
|
| 74 |
template="plotly_white",
|
|
|
|
| 77 |
)
|
| 78 |
return fig
|
| 79 |
|
| 80 |
+
# Display functions for each section
|
| 81 |
+
def display_tabular_eval(domain):
|
| 82 |
+
if domain not in TABULAR_MODEL_EVALS:
|
| 83 |
+
return None, "Invalid domain selected"
|
| 84 |
+
plot = plot_horizontal_bar(domain, TABULAR_MODEL_EVALS[domain], 'indigo')
|
| 85 |
+
details = json.dumps(TABULAR_MODEL_EVALS[domain], indent=2)
|
| 86 |
+
return plot, details
|
| 87 |
+
|
| 88 |
+
def display_llm_eval(domain):
|
| 89 |
+
if domain not in LLM_MODEL_EVALS:
|
| 90 |
+
return None, "Invalid domain selected"
|
| 91 |
+
plot = plot_horizontal_bar(domain, LLM_MODEL_EVALS[domain], 'lightblue')
|
| 92 |
+
details = json.dumps(LLM_MODEL_EVALS[domain], indent=2)
|
| 93 |
+
return plot, details
|
| 94 |
|
| 95 |
+
# Gradio interface
|
| 96 |
with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #fafafa;}") as demo:
|
| 97 |
gr.Markdown("""
|
| 98 |
+
# 🔬 Nexa Evals — Scientific ML Benchmark Suite
|
| 99 |
+
A comprehensive benchmarking suite comparing Nexa models against state-of-the-art models across scientific domains and language models.
|
| 100 |
""")
|
| 101 |
|
| 102 |
+
with gr.Tabs():
|
| 103 |
+
with gr.TabItem("Tabular Models"):
|
| 104 |
+
with gr.Row():
|
| 105 |
+
tabular_domain = gr.Dropdown(
|
| 106 |
+
choices=list(TABULAR_MODEL_EVALS.keys()),
|
| 107 |
+
label="Select Domain",
|
| 108 |
+
value="Proteins"
|
| 109 |
+
)
|
| 110 |
+
show_tabular_btn = gr.Button("Show Evaluation")
|
| 111 |
+
tabular_plot = gr.Plot(label="Benchmark Plot")
|
| 112 |
+
tabular_details = gr.Code(label="Raw Scores (JSON)", language="json")
|
| 113 |
+
show_tabular_btn.click(
|
| 114 |
+
fn=display_tabular_eval,
|
| 115 |
+
inputs=tabular_domain,
|
| 116 |
+
outputs=[tabular_plot, tabular_details]
|
| 117 |
+
)
|
| 118 |
|
| 119 |
+
with gr.TabItem("LLMs"):
|
| 120 |
+
with gr.Row():
|
| 121 |
+
llm_domain = gr.Dropdown(
|
| 122 |
+
choices=list(LLM_MODEL_EVALS.keys()),
|
| 123 |
+
label="Select Domain",
|
| 124 |
+
value="LLM (General OSIR)"
|
| 125 |
+
)
|
| 126 |
+
show_llm_btn = gr.Button("Show Evaluation")
|
| 127 |
+
llm_plot = gr.Plot(label="Benchmark Plot")
|
| 128 |
+
llm_details = gr.Code(label="Raw Scores (JSON)", language="json")
|
| 129 |
+
show_llm_btn.click(
|
| 130 |
+
fn=display_llm_eval,
|
| 131 |
+
inputs=llm_domain,
|
| 132 |
+
outputs=[llm_plot, llm_details]
|
| 133 |
+
)
|
| 134 |
|
| 135 |
gr.Markdown("""
|
| 136 |
---
|
| 137 |
### ℹ️ About
|
| 138 |
+
Nexa Evals provides benchmarks for both tabular models and language models in scientific domains:
|
| 139 |
+
- **Tabular Models**: Evaluated on domain-specific metrics (e.g., accuracy, GDT-TS) across fields like Proteins, Astro, Materials, QST, HEP, and CFD.
|
| 140 |
+
- **Language Models**: Assessed using the SciEval benchmark under the OSIR initiative, focusing on scientific utility, information entropy, internal consistency, hypothesis framing, domain grounding, and math logic.
|
| 141 |
+
Scores range from 0 to 1, with higher values indicating better performance. Models are sorted by score in descending order for easy comparison.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
""")
|
| 143 |
|
|
|
|
|
|
|
| 144 |
demo.launch()
|