Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import plotly.graph_objs as go
|
3 |
+
import plotly.express as px
|
4 |
+
import pandas as pd
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Domain-specific model evaluations
|
8 |
+
MODEL_EVALS = {
|
9 |
+
"Proteins": {
|
10 |
+
"Nexa Bio1 (Secondary)": 0.71,
|
11 |
+
"Porter6 (Secondary)": 0.8456,
|
12 |
+
"DeepCNF (Secondary)": 0.85,
|
13 |
+
"AlphaFold2 (Tertiary GDT-TS)": 0.924,
|
14 |
+
"Nexa Bio2 (Tertiary)": 0.90,
|
15 |
+
},
|
16 |
+
"Astro": {
|
17 |
+
"Nexa Astro": 0.97,
|
18 |
+
"Baseline CNN": 0.89,
|
19 |
+
},
|
20 |
+
"Materials": {
|
21 |
+
"Nexa Materials": 0.9999,
|
22 |
+
"Random Forest Baseline": 0.92,
|
23 |
+
},
|
24 |
+
"QST": {
|
25 |
+
"Nexa PIN Model": 0.80,
|
26 |
+
"Quantum TomoNet": 0.85,
|
27 |
+
},
|
28 |
+
"HEP": {
|
29 |
+
"Nexa HEP Model": 0.91,
|
30 |
+
"CMSNet": 0.94,
|
31 |
+
},
|
32 |
+
"CFD": {
|
33 |
+
"Nexa CFD Model": 0.92,
|
34 |
+
"FlowNet": 0.89,
|
35 |
+
},
|
36 |
+
}
|
37 |
+
|
38 |
+
# SCIEVAL/OSIR metrics data
|
39 |
+
SCIEVAL_METRICS = {
|
40 |
+
"Nexa Mistral Sci-7B": {
|
41 |
+
"OSIR (General)": {
|
42 |
+
"Entropy / Novelty": 6.2,
|
43 |
+
"Internal Consistency": 8.5,
|
44 |
+
"Hypothesis Framing": 6.8,
|
45 |
+
"Thematic Grounding": 7.9,
|
46 |
+
"Citation & Structure": 7.3,
|
47 |
+
"Symbolism & Math Logic": 6.1,
|
48 |
+
"Scientific Utility": 7.6
|
49 |
+
},
|
50 |
+
"OSIR-Field (Physics)": {
|
51 |
+
"Entropy / Novelty": 7.1,
|
52 |
+
"Internal Consistency": 8.9,
|
53 |
+
"Hypothesis Framing": 7.4,
|
54 |
+
"Thematic Grounding": 8.2,
|
55 |
+
"Citation & Structure": 6.5,
|
56 |
+
"Symbolism & Math Logic": 7.8,
|
57 |
+
"Scientific Utility": 8.3
|
58 |
+
}
|
59 |
+
},
|
60 |
+
# (Data below here is a demoβ¬οΈ)
|
61 |
+
"GPT-4 Scientific": {
|
62 |
+
"OSIR (General)": {
|
63 |
+
"Entropy / Novelty": 7.8,
|
64 |
+
"Internal Consistency": 8.2,
|
65 |
+
"Hypothesis Framing": 8.1,
|
66 |
+
"Thematic Grounding": 8.4,
|
67 |
+
"Citation & Structure": 8.9,
|
68 |
+
"Symbolism & Math Logic": 7.4,
|
69 |
+
"Scientific Utility": 8.1
|
70 |
+
},
|
71 |
+
"OSIR-Field (Physics)": {
|
72 |
+
"Entropy / Novelty": 7.2,
|
73 |
+
"Internal Consistency": 8.6,
|
74 |
+
"Hypothesis Framing": 8.3,
|
75 |
+
"Thematic Grounding": 8.7,
|
76 |
+
"Citation & Structure": 9.1,
|
77 |
+
"Symbolism & Math Logic": 8.2,
|
78 |
+
"Scientific Utility": 8.4
|
79 |
+
}
|
80 |
+
},
|
81 |
+
"Claude Scientific": {
|
82 |
+
"OSIR (General)": {
|
83 |
+
"Entropy / Novelty": 7.5,
|
84 |
+
"Internal Consistency": 9.1,
|
85 |
+
"Hypothesis Framing": 7.9,
|
86 |
+
"Thematic Grounding": 8.8,
|
87 |
+
"Citation & Structure": 8.7,
|
88 |
+
"Symbolism & Math Logic": 7.8,
|
89 |
+
"Scientific Utility": 8.3
|
90 |
+
},
|
91 |
+
"OSIR-Field (Physics)": {
|
92 |
+
"Entropy / Novelty": 7.4,
|
93 |
+
"Internal Consistency": 9.2,
|
94 |
+
"Hypothesis Framing": 8.1,
|
95 |
+
"Thematic Grounding": 8.9,
|
96 |
+
"Citation & Structure": 8.5,
|
97 |
+
"Symbolism & Math Logic": 8.4,
|
98 |
+
"Scientific Utility": 8.6
|
99 |
+
}
|
100 |
+
}
|
101 |
+
}
|
102 |
+
|
103 |
+
def plot_domain_benchmark(domain):
|
104 |
+
"""Create bar chart for domain-specific benchmarks"""
|
105 |
+
models = list(MODEL_EVALS[domain].keys())
|
106 |
+
scores = list(MODEL_EVALS[domain].values())
|
107 |
+
|
108 |
+
# Color coding for Nexa models vs others
|
109 |
+
colors = ['#FF6B35' if 'Nexa' in model else '#4A90E2' for model in models]
|
110 |
+
|
111 |
+
fig = go.Figure()
|
112 |
+
fig.add_trace(go.Bar(
|
113 |
+
x=models,
|
114 |
+
y=scores,
|
115 |
+
marker_color=colors,
|
116 |
+
text=[f'{score:.3f}' for score in scores],
|
117 |
+
textposition='auto'
|
118 |
+
))
|
119 |
+
|
120 |
+
fig.update_layout(
|
121 |
+
title=f"Model Benchmark Scores β {domain}",
|
122 |
+
xaxis_title="Model",
|
123 |
+
yaxis_title="Score",
|
124 |
+
yaxis_range=[0, 1.0],
|
125 |
+
template="plotly_white",
|
126 |
+
height=500,
|
127 |
+
showlegend=False
|
128 |
+
)
|
129 |
+
return fig
|
130 |
+
|
131 |
+
def plot_scieval_comparison(model_name):
|
132 |
+
"""Create comparison chart for SCIEVAL metrics"""
|
133 |
+
if model_name not in SCIEVAL_METRICS:
|
134 |
+
return go.Figure()
|
135 |
+
|
136 |
+
metrics = list(SCIEVAL_METRICS[model_name]["OSIR (General)"].keys())
|
137 |
+
osir_scores = list(SCIEVAL_METRICS[model_name]["OSIR (General)"].values())
|
138 |
+
field_scores = list(SCIEVAL_METRICS[model_name]["OSIR-Field (Physics)"].values())
|
139 |
+
|
140 |
+
fig = go.Figure()
|
141 |
+
|
142 |
+
fig.add_trace(go.Bar(
|
143 |
+
name='OSIR (General)',
|
144 |
+
x=metrics,
|
145 |
+
y=osir_scores,
|
146 |
+
marker_color='#FFD700',
|
147 |
+
text=[f'{score:.1f}' for score in osir_scores],
|
148 |
+
textposition='auto'
|
149 |
+
))
|
150 |
+
|
151 |
+
fig.add_trace(go.Bar(
|
152 |
+
name='OSIR-Field (Physics)',
|
153 |
+
x=metrics,
|
154 |
+
y=field_scores,
|
155 |
+
marker_color='#FF6B35',
|
156 |
+
text=[f'{score:.1f}' for score in field_scores],
|
157 |
+
textposition='auto'
|
158 |
+
))
|
159 |
+
|
160 |
+
fig.update_layout(
|
161 |
+
title=f"SCIEVAL Metrics Comparison β {model_name}",
|
162 |
+
xaxis_title="Metric",
|
163 |
+
yaxis_title="Score (1-10)",
|
164 |
+
yaxis_range=[0, 10],
|
165 |
+
template="plotly_white",
|
166 |
+
height=500,
|
167 |
+
barmode='group',
|
168 |
+
xaxis_tickangle=-45
|
169 |
+
)
|
170 |
+
return fig
|
171 |
+
|
172 |
+
def create_leaderboard():
|
173 |
+
"""Create leaderboard table"""
|
174 |
+
leaderboard_data = []
|
175 |
+
|
176 |
+
# Add domain benchmark leaders
|
177 |
+
for domain, models in MODEL_EVALS.items():
|
178 |
+
best_model = max(models.items(), key=lambda x: x[1])
|
179 |
+
leaderboard_data.append({
|
180 |
+
"Domain": domain,
|
181 |
+
"Best Model": best_model[0],
|
182 |
+
"Score": f"{best_model[1]:.3f}",
|
183 |
+
"Metric Type": "Domain Benchmark"
|
184 |
+
})
|
185 |
+
|
186 |
+
# Add SCIEVAL leaders
|
187 |
+
for model, evaluations in SCIEVAL_METRICS.items():
|
188 |
+
avg_osir = sum(evaluations["OSIR (General)"].values()) / len(evaluations["OSIR (General)"])
|
189 |
+
avg_field = sum(evaluations["OSIR-Field (Physics)"].values()) / len(evaluations["OSIR-Field (Physics)"])
|
190 |
+
|
191 |
+
leaderboard_data.append({
|
192 |
+
"Domain": "OSIR General",
|
193 |
+
"Best Model": model,
|
194 |
+
"Score": f"{avg_osir:.2f}",
|
195 |
+
"Metric Type": "SCIEVAL"
|
196 |
+
})
|
197 |
+
|
198 |
+
leaderboard_data.append({
|
199 |
+
"Domain": "OSIR Physics",
|
200 |
+
"Best Model": model,
|
201 |
+
"Score": f"{avg_field:.2f}",
|
202 |
+
"Metric Type": "SCIEVAL"
|
203 |
+
})
|
204 |
+
|
205 |
+
df = pd.DataFrame(leaderboard_data)
|
206 |
+
return df
|
207 |
+
|
208 |
+
def get_model_details(domain):
|
209 |
+
"""Get JSON details for domain models"""
|
210 |
+
return json.dumps(MODEL_EVALS[domain], indent=2)
|
211 |
+
|
212 |
+
def display_domain_eval(domain):
|
213 |
+
"""Display domain evaluation results"""
|
214 |
+
plot = plot_domain_benchmark(domain)
|
215 |
+
details = get_model_details(domain)
|
216 |
+
return plot, details
|
217 |
+
|
218 |
+
def display_scieval(model_name):
|
219 |
+
"""Display SCIEVAL results"""
|
220 |
+
plot = plot_scieval_comparison(model_name)
|
221 |
+
if model_name in SCIEVAL_METRICS:
|
222 |
+
details = json.dumps(SCIEVAL_METRICS[model_name], indent=2)
|
223 |
+
else:
|
224 |
+
details = "Model not found in SCIEVAL database"
|
225 |
+
return plot, details
|
226 |
+
|
227 |
+
# Create Gradio interface
|
228 |
+
with gr.Blocks(title="Scientific ML Benchmark Suite", theme=gr.themes.Soft()) as demo:
|
229 |
+
gr.Markdown("""
|
230 |
+
# π¬ Scientific ML Benchmark Suite
|
231 |
+
### Comprehensive evaluation framework for scientific machine learning models
|
232 |
+
|
233 |
+
This suite combines domain-specific benchmarks with SCIEVAL (Scientific Evaluation) metrics to provide
|
234 |
+
comprehensive assessment of ML models across scientific disciplines.
|
235 |
+
""")
|
236 |
+
|
237 |
+
with gr.Tabs():
|
238 |
+
# Domain Benchmarks Tab
|
239 |
+
with gr.TabItem("π§ͺ Domain Benchmarks"):
|
240 |
+
gr.Markdown("""
|
241 |
+
### Domain-Specific Model Evaluations
|
242 |
+
Compare models across scientific domains including Proteins, Astronomy, Materials Science,
|
243 |
+
Quantum State Tomography (QST), High Energy Physics (HEP), and Computational Fluid Dynamics (CFD).
|
244 |
+
""")
|
245 |
+
|
246 |
+
with gr.Row():
|
247 |
+
domain_dropdown = gr.Dropdown(
|
248 |
+
choices=list(MODEL_EVALS.keys()),
|
249 |
+
label="Select Scientific Domain",
|
250 |
+
value="Proteins"
|
251 |
+
)
|
252 |
+
domain_btn = gr.Button("Run Domain Evaluation", variant="primary")
|
253 |
+
|
254 |
+
with gr.Row():
|
255 |
+
domain_plot = gr.Plot(label="Domain Benchmark Results")
|
256 |
+
domain_metrics = gr.Code(label="Raw Scores (JSON)", language="json")
|
257 |
+
|
258 |
+
domain_btn.click(
|
259 |
+
display_domain_eval,
|
260 |
+
inputs=domain_dropdown,
|
261 |
+
outputs=[domain_plot, domain_metrics]
|
262 |
+
)
|
263 |
+
|
264 |
+
# SCIEVAL Tab
|
265 |
+
with gr.TabItem("π SCIEVAL Metrics"):
|
266 |
+
gr.Markdown("""
|
267 |
+
### SCIEVAL: Scientific Reasoning Evaluation
|
268 |
+
Assess models on scientific reasoning capabilities using the OSIR (Open Scientific Intelligence & Reasoning) framework.
|
269 |
+
|
270 |
+
**Metrics evaluated:**
|
271 |
+
- **Entropy/Novelty**: Originality and information richness
|
272 |
+
- **Internal Consistency**: Logical structure and argument continuity
|
273 |
+
- **Hypothesis Framing**: Research aim clarity
|
274 |
+
- **Thematic Grounding**: Domain focus and relevance
|
275 |
+
- **Citation & Structure**: Scientific formatting
|
276 |
+
- **Symbolism & Math Logic**: Mathematical rigor
|
277 |
+
- **Scientific Utility**: Real-world research value
|
278 |
+
""")
|
279 |
+
|
280 |
+
with gr.Row():
|
281 |
+
scieval_dropdown = gr.Dropdown(
|
282 |
+
choices=list(SCIEVAL_METRICS.keys()),
|
283 |
+
label="Select Model for SCIEVAL",
|
284 |
+
value="Nexa Mistral Sci-7B"
|
285 |
+
)
|
286 |
+
scieval_btn = gr.Button("Run SCIEVAL Analysis", variant="primary")
|
287 |
+
|
288 |
+
with gr.Row():
|
289 |
+
scieval_plot = gr.Plot(label="SCIEVAL Metrics Comparison")
|
290 |
+
scieval_metrics = gr.Code(label="Detailed Scores (JSON)", language="json")
|
291 |
+
|
292 |
+
scieval_btn.click(
|
293 |
+
display_scieval,
|
294 |
+
inputs=scieval_dropdown,
|
295 |
+
outputs=[scieval_plot, scieval_metrics]
|
296 |
+
)
|
297 |
+
|
298 |
+
# Leaderboard Tab
|
299 |
+
with gr.TabItem("π Leaderboard"):
|
300 |
+
gr.Markdown("""
|
301 |
+
### Scientific ML Model Leaderboard
|
302 |
+
Current best-performing models across all evaluated domains and metrics.
|
303 |
+
""")
|
304 |
+
|
305 |
+
leaderboard_df = create_leaderboard()
|
306 |
+
leaderboard_table = gr.Dataframe(
|
307 |
+
value=leaderboard_df,
|
308 |
+
label="Current Leaders by Domain",
|
309 |
+
interactive=False
|
310 |
+
)
|
311 |
+
|
312 |
+
# About Tab
|
313 |
+
with gr.TabItem("βΉοΈ About"):
|
314 |
+
gr.Markdown("""
|
315 |
+
### About the Scientific ML Benchmark Suite
|
316 |
+
|
317 |
+
This comprehensive evaluation framework combines two powerful assessment methodologies:
|
318 |
+
|
319 |
+
#### π― Domain Benchmarks
|
320 |
+
- **Proteins**: Secondary/tertiary structure prediction accuracy
|
321 |
+
- **Astronomy**: Object classification and detection
|
322 |
+
- **Materials**: Property prediction and discovery
|
323 |
+
- **QST**: Quantum state tomography reconstruction
|
324 |
+
- **HEP**: High energy physics event classification
|
325 |
+
- **CFD**: Computational fluid dynamics modeling
|
326 |
+
|
327 |
+
#### π¬ SCIEVAL Framework
|
328 |
+
SCIEVAL is part of the OSIR (Open Scientific Intelligence & Reasoning) initiative, providing:
|
329 |
+
|
330 |
+
- **Standardized Evaluation**: Reproducible metrics for scientific LLMs
|
331 |
+
- **Domain Adaptation**: Field-specific evaluation extensions
|
332 |
+
- **Research Utility**: Assessment of real-world scientific value
|
333 |
+
|
334 |
+
**OSIR-Field Extensions:**
|
335 |
+
- `osir-field-physics`: Physics-specific reasoning evaluation
|
336 |
+
- `osir-field-bio`: Biological sciences assessment
|
337 |
+
- `osir-field-chem`: Chemistry domain evaluation
|
338 |
+
- `osir-field-cs`: Computer science applications
|
339 |
+
|
340 |
+
#### π Scoring System
|
341 |
+
- **Domain Benchmarks**: 0.0 - 1.0 scale (higher is better)
|
342 |
+
- **SCIEVAL Metrics**: 1 - 10 scale across seven dimensions
|
343 |
+
|
344 |
+
#### π€ Contributing
|
345 |
+
This is an open framework welcoming contributions:
|
346 |
+
- New domain-specific test sets
|
347 |
+
- Additional evaluation metrics
|
348 |
+
- Model submissions for benchmarking
|
349 |
+
|
350 |
+
#### π Citation
|
351 |
+
```
|
352 |
+
@misc{scieval2024,
|
353 |
+
title={SCIEVAL: A Benchmark for Evaluating Scientific Reasoning in Language Models},
|
354 |
+
author={NEXA Research},
|
355 |
+
year={2025},
|
356 |
+
url={https://huggingface.co/spaces/osir/scieval}
|
357 |
+
}
|
358 |
+
```
|
359 |
+
|
360 |
+
---
|
361 |
+
|
362 |
+
**License**: Apache 2.0 | **Framework**: OSIR Initiative | **Platform**: Gradio + Plotly
|
363 |
+
""")
|
364 |
+
|
365 |
+
# Initialize with default values
|
366 |
+
demo.load(
|
367 |
+
lambda: (plot_domain_benchmark("Proteins"), get_model_details("Proteins")),
|
368 |
+
outputs=[domain_plot, domain_metrics]
|
369 |
+
)
|
370 |
+
|
371 |
+
demo.load(
|
372 |
+
lambda: (plot_scieval_comparison("Nexa Mistral Sci-7B"),
|
373 |
+
json.dumps(SCIEVAL_METRICS["Nexa Mistral Sci-7B"], indent=2)),
|
374 |
+
outputs=[scieval_plot, scieval_metrics]
|
375 |
+
)
|
376 |
+
|
377 |
+
if __name__ == "__main__":
|
378 |
+
demo.launch()
|