Spaces:
Running
Running
File size: 19,060 Bytes
16d37fe 22b961e 37f25a7 22b961e 16d37fe 37f25a7 22b961e 37f25a7 16d37fe 37f25a7 16d37fe 37f25a7 16d37fe 37f25a7 16d37fe 37f25a7 16d37fe 37f25a7 16d37fe 37f25a7 16d37fe 37f25a7 22b961e 37f25a7 22b961e 37f25a7 22b961e 37f25a7 22b961e 37f25a7 22b961e 37f25a7 22b961e 16d37fe 37f25a7 16d37fe 37f25a7 fc48a46 37f25a7 fc48a46 37f25a7 16d37fe 37f25a7 16d37fe 37f25a7 fc48a46 37f25a7 fc48a46 37f25a7 fc48a46 37f25a7 16d37fe 37f25a7 16d37fe 37f25a7 22b961e 37f25a7 612e75d 37f25a7 612e75d 37f25a7 16d37fe 37f25a7 612e75d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
import gradio as gr
import plotly.graph_objs as go
import plotly.express as px
import pandas as pd
import numpy as np
from datetime import datetime
import json
# Enhanced model evaluation data with comprehensive metrics
MODEL_EVALS = {
"Proteins": {
"models": {
"AlphaFold2 (Tertiary GDT-TS)": {
"score": 0.924,
"parameters": "2.3B",
"institution": "DeepMind",
"date": "2021-07-15",
"paper": "https://doi.org/10.1038/s41586-021-03819-2",
"task": "Protein Structure Prediction"
},
"Nexa Bio2 (Tertiary)": {
"score": 0.90,
"parameters": "1.8B",
"institution": "Nexa Research",
"date": "2024-11-20",
"paper": "https://arxiv.org/abs/2024.protein.nexa",
"task": "Protein Structure Prediction"
},
"DeepCNF (Secondary)": {
"score": 0.85,
"parameters": "450M",
"institution": "University of Missouri",
"date": "2019-03-12",
"paper": "https://doi.org/10.1186/s12859-019-2940-0",
"task": "Secondary Structure Prediction"
},
"Porter6 (Secondary)": {
"score": 0.8456,
"parameters": "120M",
"institution": "University of Padova",
"date": "2022-05-10",
"paper": "https://doi.org/10.1038/s41598-022-10847-w",
"task": "Secondary Structure Prediction"
},
"Nexa Bio1 (Secondary)": {
"score": 0.71,
"parameters": "800M",
"institution": "Nexa Research",
"date": "2024-09-15",
"paper": "https://arxiv.org/abs/2024.bio1.nexa",
"task": "Secondary Structure Prediction"
}
},
"metric": "Accuracy",
"description": "Protein structure prediction accuracy across secondary and tertiary structure tasks"
},
"Astronomy": {
"models": {
"Nexa Astro": {
"score": 0.97,
"parameters": "2.1B",
"institution": "Nexa Research",
"date": "2024-10-05",
"paper": "https://arxiv.org/abs/2024.astro.nexa",
"task": "Galaxy Classification"
},
"Baseline CNN": {
"score": 0.89,
"parameters": "50M",
"institution": "Various",
"date": "2020-01-01",
"paper": "Standard CNN Architecture",
"task": "Galaxy Classification"
}
},
"metric": "F1-Score",
"description": "Astronomical object classification and analysis performance"
},
"Materials Science": {
"models": {
"Nexa Materials": {
"score": 0.9999,
"parameters": "1.5B",
"institution": "Nexa Research",
"date": "2024-12-01",
"paper": "https://arxiv.org/abs/2024.materials.nexa",
"task": "Property Prediction"
},
"Random Forest Baseline": {
"score": 0.92,
"parameters": "N/A",
"institution": "Various",
"date": "2018-01-01",
"paper": "Standard ML Baseline",
"task": "Property Prediction"
}
},
"metric": "RΒ² Score",
"description": "Materials property prediction and discovery performance"
},
"Quantum State Tomography": {
"models": {
"Quantum TomoNet": {
"score": 0.85,
"parameters": "890M",
"institution": "IBM Research",
"date": "2023-04-20",
"paper": "https://doi.org/10.1038/s41567-023-02020-x",
"task": "State Reconstruction"
},
"Nexa QST Model": {
"score": 0.80,
"parameters": "1.2B",
"institution": "Nexa Research",
"date": "2024-08-30",
"paper": "https://arxiv.org/abs/2024.qst.nexa",
"task": "State Reconstruction"
}
},
"metric": "Fidelity",
"description": "Quantum state reconstruction accuracy and fidelity measures"
},
"High Energy Physics": {
"models": {
"CMSNet": {
"score": 0.94,
"parameters": "3.2B",
"institution": "CERN",
"date": "2023-11-15",
"paper": "https://doi.org/10.1007/JHEP11(2023)045",
"task": "Particle Detection"
},
"Nexa HEP Model": {
"score": 0.91,
"parameters": "2.8B",
"institution": "Nexa Research",
"date": "2024-07-12",
"paper": "https://arxiv.org/abs/2024.hep.nexa",
"task": "Particle Detection"
}
},
"metric": "AUC-ROC",
"description": "High energy physics event detection and classification"
},
"Computational Fluid Dynamics": {
"models": {
"Nexa CFD Model": {
"score": 0.92,
"parameters": "1.9B",
"institution": "Nexa Research",
"date": "2024-06-18",
"paper": "https://arxiv.org/abs/2024.cfd.nexa",
"task": "Flow Prediction"
},
"FlowNet": {
"score": 0.89,
"parameters": "1.1B",
"institution": "Technical University of Munich",
"date": "2022-09-30",
"paper": "https://doi.org/10.1016/j.jcp.2022.111567",
"task": "Flow Prediction"
}
},
"metric": "RMSE",
"description": "Fluid dynamics simulation and prediction accuracy"
}
}
def create_overall_leaderboard():
"""Create overall leaderboard across all domains"""
all_models = []
for domain, data in MODEL_EVALS.items():
for model_name, model_data in data["models"].items():
all_models.append({
"Model": model_name,
"Domain": domain,
"Score": model_data["score"],
"Parameters": model_data["parameters"],
"Institution": model_data["institution"],
"Date": model_data["date"],
"Paper": model_data["paper"],
"Task": model_data["task"]
})
df = pd.DataFrame(all_models)
df = df.sort_values('Score', ascending=False)
return df
def create_domain_plot(domain):
"""Create domain-specific bar chart"""
if domain not in MODEL_EVALS:
return go.Figure()
models_data = MODEL_EVALS[domain]["models"]
models = list(models_data.keys())
scores = [models_data[model]["score"] for model in models]
# Color scheme: Nexa models in brand color, others in neutral
colors = ['#6366f1' if 'Nexa' in model else '#64748b' for model in models]
fig = go.Figure()
fig.add_trace(go.Bar(
x=models,
y=scores,
marker_color=colors,
text=[f"{score:.3f}" for score in scores],
textposition='auto',
hovertemplate='<b>%{x}</b><br>Score: %{y:.3f}<extra></extra>'
))
fig.update_layout(
title=f"{domain} - Model Performance Comparison",
xaxis_title="Model",
yaxis_title=f"{MODEL_EVALS[domain]['metric']}",
yaxis_range=[0, 1.0],
template="plotly_white",
height=500,
font=dict(size=12),
title_font_size=16,
showlegend=False
)
# Rotate x-axis labels for better readability
fig.update_xaxes(tickangle=45)
return fig
def create_radar_chart():
"""Create radar chart showing Nexa models across domains"""
nexa_models = {}
categories = []
for domain, data in MODEL_EVALS.items():
for model_name, model_data in data["models"].items():
if "Nexa" in model_name:
categories.append(domain)
nexa_models[domain] = model_data["score"]
break
if not nexa_models:
return go.Figure()
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=list(nexa_models.values()),
theta=categories,
fill='toself',
name='Nexa Models',
line_color='#6366f1',
fillcolor='rgba(99, 102, 241, 0.2)'
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1]
)),
showlegend=True,
title="Nexa Models Performance Across Domains",
height=500
)
return fig
def create_timeline_plot():
"""Create timeline showing model releases"""
all_models = []
for domain, data in MODEL_EVALS.items():
for model_name, model_data in data["models"].items():
all_models.append({
"Model": model_name,
"Domain": domain,
"Score": model_data["score"],
"Date": pd.to_datetime(model_data["date"]),
"Institution": model_data["institution"],
"IsNexa": "Nexa" in model_name
})
df = pd.DataFrame(all_models)
df = df.sort_values('Date')
fig = px.scatter(
df,
x='Date',
y='Score',
color='IsNexa',
size='Score',
hover_data=['Model', 'Domain', 'Institution'],
color_discrete_map={True: '#6366f1', False: '#64748b'},
title="Model Performance Timeline"
)
fig.update_layout(
height=500,
showlegend=True,
legend=dict(title="Model Type")
)
# Update trace names for better legend display
fig.for_each_trace(lambda t: t.update(name="Nexa Models" if t.name == "True" else "Other Models"))
return fig
def get_domain_details(domain):
"""Get detailed information about a domain"""
if domain not in MODEL_EVALS:
return "Domain not found"
data = MODEL_EVALS[domain]
details = {
"domain": domain,
"metric": data["metric"],
"description": data["description"],
"models": data["models"]
}
return json.dumps(details, indent=2)
def format_leaderboard_table(df):
"""Format the leaderboard table for display"""
# Create display-friendly format
df_display = df.copy()
# Truncate long URLs for better display
df_display['Paper'] = df_display['Paper'].apply(
lambda x: "π Link" if x.startswith('http') else x
)
return df_display
# Custom CSS for styling
custom_css = """
<style>
.main-header {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 2rem;
border-radius: 10px;
margin-bottom: 2rem;
}
.metric-card {
background: #f8fafc;
border: 1px solid #e2e8f0;
border-radius: 8px;
padding: 1rem;
margin: 0.5rem;
text-align: center;
}
.metric-value {
font-size: 2rem;
font-weight: bold;
color: #6366f1;
}
.metric-label {
color: #64748b;
font-size: 0.9rem;
}
</style>
"""
# Create Gradio interface
with gr.Blocks(
title="π¬ Nexa Evals - Scientific ML Benchmark Leaderboard",
theme=gr.themes.Soft(),
css=custom_css
) as demo:
# Header
gr.HTML("""
<div class="main-header">
<h1>π¬ Nexa Evals</h1>
<h2>Scientific Machine Learning Benchmark Leaderboard</h2>
<p>Comprehensive evaluation suite comparing state-of-the-art models across scientific domains</p>
</div>
""")
# Metrics overview
total_models = sum(len(data["models"]) for data in MODEL_EVALS.values())
total_domains = len(MODEL_EVALS)
nexa_models = sum(1 for data in MODEL_EVALS.values()
for model in data["models"].keys() if "Nexa" in model)
with gr.Row():
gr.HTML(f"""
<div class="metric-card">
<div class="metric-value">{total_models}</div>
<div class="metric-label">Total Models</div>
</div>
""")
gr.HTML(f"""
<div class="metric-card">
<div class="metric-value">{total_domains}</div>
<div class="metric-label">Scientific Domains</div>
</div>
""")
gr.HTML(f"""
<div class="metric-card">
<div class="metric-value">{nexa_models}</div>
<div class="metric-label">Nexa Models</div>
</div>
""")
# Main content tabs
with gr.Tabs():
# Overall Leaderboard Tab
with gr.TabItem("π Overall Leaderboard"):
gr.Markdown("""
### Complete ranking of all models across scientific domains
Models are ranked by their performance scores within their respective domains.
""")
overall_df = create_overall_leaderboard()
leaderboard_table = gr.Dataframe(
value=overall_df,
headers=["Model", "Domain", "Score", "Parameters", "Institution", "Date", "Paper", "Task"],
datatype=["str", "str", "number", "str", "str", "str", "str", "str"],
interactive=False
)
# Domain Analysis Tab
with gr.TabItem("π Domain Analysis"):
gr.Markdown("""
### Domain-specific model performance analysis
Select a domain to view detailed performance metrics and model comparisons.
""")
with gr.Row():
domain_dropdown = gr.Dropdown(
choices=list(MODEL_EVALS.keys()),
value=list(MODEL_EVALS.keys())[0],
label="Select Scientific Domain"
)
with gr.Row():
domain_plot = gr.Plot(label="Performance Comparison")
with gr.Row():
domain_details = gr.Code(
label="Domain Details (JSON)",
language="json"
)
domain_dropdown.change(
fn=lambda x: [create_domain_plot(x), get_domain_details(x)],
inputs=domain_dropdown,
outputs=[domain_plot, domain_details]
)
# Initialize with first domain
demo.load(
fn=lambda: [create_domain_plot(list(MODEL_EVALS.keys())[0]),
get_domain_details(list(MODEL_EVALS.keys())[0])],
outputs=[domain_plot, domain_details]
)
# Nexa Models Tab
with gr.TabItem("π Nexa Models"):
gr.Markdown("""
### Nexa Research model performance overview
Comprehensive analysis of Nexa models across all scientific domains.
""")
with gr.Row():
nexa_radar = gr.Plot(
value=create_radar_chart(),
label="Nexa Models - Cross-Domain Performance"
)
nexa_df = overall_df[overall_df['Model'].str.contains('Nexa', na=False)]
nexa_table = gr.Dataframe(
value=nexa_df,
headers=["Model", "Domain", "Score", "Parameters", "Institution", "Date", "Paper", "Task"],
label="Nexa Models Detailed View"
)
# Timeline Tab
with gr.TabItem("π Timeline"):
gr.Markdown("""
### Model development timeline
Track the evolution of scientific ML models over time.
""")
timeline_plot = gr.Plot(
value=create_timeline_plot(),
label="Model Performance Timeline"
)
# About Tab
with gr.TabItem("βΉοΈ About"):
gr.Markdown("""
## About Nexa Evals
Nexa Evals is a comprehensive benchmarking suite for evaluating machine learning models
across diverse scientific domains. Our evaluation framework provides:
### π― Evaluation Domains
- **Proteins**: Structure prediction (secondary/tertiary)
- **Astronomy**: Galaxy classification and analysis
- **Materials Science**: Property prediction and discovery
- **Quantum State Tomography**: State reconstruction
- **High Energy Physics**: Particle detection and classification
- **Computational Fluid Dynamics**: Flow prediction and simulation
### π Evaluation Metrics
Each domain uses appropriate metrics:
- **Accuracy**: Classification tasks
- **F1-Score**: Balanced precision/recall evaluation
- **RΒ² Score**: Regression performance
- **Fidelity**: Quantum state reconstruction accuracy
- **AUC-ROC**: Binary classification performance
- **RMSE**: Regression error measurement
### π¬ Scientific Rigor
All benchmarks are based on established datasets and evaluation protocols
from peer-reviewed research. Model scores are computed using standardized
metrics to ensure fair comparison.
### π Nexa Research
Nexa Research is developing next-generation AI models specifically designed
for scientific applications. Our models are trained on domain-specific data
and optimized for scientific reasoning and discovery.
### π Citations & References
For detailed information about evaluation protocols and datasets, please
refer to the linked papers in the model details.
---
**Last Updated**: {datetime.now().strftime("%B %d, %Y")}
**Contact**: [Nexa Research](https://nexaresearch.ai) | [GitHub](https://github.com/nexa-research)
""")
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; padding: 1rem; background: #f8fafc; border-radius: 8px;">
<p>π¬ <strong>Nexa Evals</strong> - Advancing Scientific Machine Learning</p>
<p>Built with β€οΈ by <a href="https://nexaresearch.ai" target="_blank">Nexa Research</a></p>
</div>
""")
if __name__ == "__main__":
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |