Spaces:
Running
Running
File size: 1,334 Bytes
aff3dff 932a3aa aff3dff 45996ec 932a3aa aff3dff 932a3aa aff3dff 932a3aa 45996ec 932a3aa aff3dff 45996ec 932a3aa 45996ec 932a3aa aff3dff 45996ec aff3dff 932a3aa 45996ec 932a3aa aff3dff 45996ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
from transformers import pipeline
# Set Streamlit page configuration
st.set_page_config(page_title="AI Chatbot", layout="centered")
# Load the model pipeline (cached to avoid reloading on each run)
@st.cache_resource
def load_pipeline():
model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
return pipeline("text-generation", model=model_name)
pipe = load_pipeline()
# App UI
st.title("🤖 AI Chatbot")
st.markdown(
"""
Welcome to the **AI Chatbot** powered by Hugging Face's **Llama-3.1-8B-Lexi-Uncensored-V2** model.
Enter your message below, and the AI will respond!
"""
)
# Input Textbox
user_input = st.text_area(
"Your Message",
placeholder="Type your message here...",
height=100
)
# Generate Button and Response
if st.button("Generate Response"):
if user_input.strip():
with st.spinner("Generating response..."):
# Generate a response
response = pipe(user_input, max_length=150, num_return_sequences=1)
st.text_area("Response", value=response[0]['generated_text'], height=200)
else:
st.warning("Please enter a message before clicking the button.")
# Footer
st.markdown("---")
st.markdown("Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face](https://huggingface.co).")
|