Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 1,125 Bytes
			
			| 9f2969f aff3dff | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# Load the pipeline
model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
pipe = pipeline("text-generation", model=model_name)
# Optionally load the tokenizer and model directly (not used directly in this example)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def generate_response(prompt):
    """Generate a response from the model given a prompt."""
    response = pipe(prompt, max_length=100, num_return_sequences=1)
    return response[0]['generated_text']
# Streamlit Interface
st.title("AI Chatbot using Hugging Face")
st.markdown("This app uses the Llama-3.1-8B-Lexi-Uncensored-V2 model to generate responses.")
user_input = st.text_input("Enter your message:", placeholder="Type something here...")
if st.button("Generate Response"):
    if user_input:
        response = generate_response(user_input)
        st.text_area("Response:", value=response, height=200)
    else:
        st.warning("Please enter a message before clicking the button.")
 |