speech-to-text / app.py
cesar's picture
Update app.py
f452077 verified
raw
history blame
3.16 kB
import os
import io
import gradio as gr
import subprocess
import wave
from google.cloud import speech
from google.api_core.client_options import ClientOptions
# Obtener la API Key desde las variables de entorno
try:
API_KEY = os.environ["GOOGLE_API_KEY"]
except KeyError:
raise ValueError("La API Key de Google no está disponible. Configúrala en los Secrets como 'GOOGLE_API_KEY'.")
# Configurar cliente de Google Speech-to-Text con API Key
client_options = ClientOptions(api_key=API_KEY)
client = speech.SpeechClient(client_options=client_options)
def get_sample_rate(file_path):
"""Obtiene la tasa de muestreo (sample rate) de un archivo de audio."""
with wave.open(file_path, "rb") as wf:
return wf.getframerate()
def convert_to_wav(input_file):
"""Convierte archivos de audio a WAV LINEAR16 con la tasa de muestreo correcta."""
output_file = input_file + ".wav"
command = [
"ffmpeg", "-y", "-i", input_file,
"-acodec", "pcm_s16le", "-ar", "48000", "-ac", "1", output_file # 48000 Hz para evitar el error
]
subprocess.run(command, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return output_file
def transcribe(audio_file=None):
"""Transcribe audio a texto usando Google Cloud Speech-to-Text."""
if audio_file is None:
return "No se ha seleccionado ningún archivo.", ""
# Convertir a WAV si es necesario
if not audio_file.endswith(".wav"):
audio_file = convert_to_wav(audio_file)
# Verificar el tamaño del archivo (máximo 10MB)
if os.path.getsize(audio_file) > 10 * 1024 * 1024:
return "Error: El archivo de audio supera los 10MB. Usa un archivo más pequeño.", ""
# Obtener la tasa de muestreo real del archivo convertido
sample_rate = get_sample_rate(audio_file)
# Configuración de la solicitud
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=sample_rate, # Usamos la tasa de muestreo detectada automáticamente
audio_channel_count=1,
language_code="es-AR",
)
# Cargar el audio en binario
with io.open(audio_file, "rb") as file:
content = file.read()
audio = speech.RecognitionAudio(content=content)
# Realiza la transcripción
response = client.recognize(config=config, audio=audio)
transcript = []
confidence = []
# Leer la respuesta de la API
for result in response.results:
confidence.append(str(result.alternatives[0].confidence))
transcript.append(result.alternatives[0].transcript)
return ' '.join(transcript), '\n'.join(confidence)
# Configuración de la interfaz Gradio
output1 = gr.Textbox(label='Transcripción')
output2 = gr.Textbox(label='Confianza')
demo = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath", label="Subir o grabar audio"),
outputs=[output1, output2],
title='Demo Speech-to-Text con Google Cloud',
description='<p>Grabar o subir un archivo de audio para convertir voz a texto usando Google Cloud Speech-to-Text.</p>'
)
demo.launch()