speech-to-text / app.py
cesar's picture
Update app.py
cbcfe06 verified
raw
history blame
1.98 kB
import io
import os
import gradio as gr
from google.cloud import speech
from google.api_core.client_options import ClientOptions
# Obtener la API Key desde las variables de entorno
API_KEY = os.getenv("GOOGLE_API_KEY")
# Verificar si la API Key está configurada
if not API_KEY:
raise ValueError("La API Key de Google no está configurada. Configúrala en la variable de entorno GOOGLE_API_KEY.")
def transcribe(file_name):
"""Transcribe audio a texto usando Google Cloud Speech-to-Text con API Key."""
if file_name is None:
return '', ''
# Configurar el cliente de Speech-to-Text con API Key
client_options = ClientOptions(api_key=API_KEY)
client = speech.SpeechClient(client_options=client_options)
# Configuración de la solicitud
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=44100,
audio_channel_count=1,
language_code="es-AR",
)
# Cargar el audio en binario
with io.open(file_name, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
# Realiza la transcripción
response = client.recognize(config=config, audio=audio)
transcript = []
confidence = []
# Lee la respuesta de la API
for result in response.results:
confidence.append(str(result.alternatives[0].confidence))
transcript.append(result.alternatives[0].transcript)
return ' '.join(transcript), '\n'.join(confidence)
# Configuración de la interfaz Gradio
output1 = gr.Textbox(label='Transcripción')
output2 = gr.Textbox(label='Confianza')
demo = gr.Interface(
transcribe,
gr.Audio(sources=["microphone"], type="filepath", label='Grabar audio aquí', streaming=False),
[output1, output2],
title='Demo Reconocimiento de voz',
description='<p>Grabar audio para convertir voz a texto usando IA.</p>'
)
demo.launch()