Spaces:
Runtime error
Runtime error
import os | |
from threading import Thread | |
from typing import Iterator, List, Dict, Any | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, Conversation, pipeline | |
MAX_MAX_NEW_TOKENS = 1024 | |
DEFAULT_MAX_NEW_TOKENS = 256 | |
MAX_INPUT_TOKEN_LENGTH = 512 | |
DESCRIPTION = """\ | |
# Buzz-3B-Small | |
This Space demonstrates Buzz-3b-small-v0.6.3. | |
""" | |
LICENSE = """ | |
<p/> | |
--- | |
Chat with Buzz-small! | |
only 3b, this demo runs on the fp8 weights of the model in pytorch format, its brains are probably significantly damaged, converting to cpp soon, dont worry! | |
""" | |
device = 0 if torch.cuda.is_available() else -1 | |
model_id = "H-D-T/Buzz-3b-small-v0.6.3" | |
chatbot = pipeline(model=model_id, device=device, task="conversationa",model_kwargs={"load_in_8bit": True}) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
bos_token = "<|begin_of_text|>" | |
eos_token = "<|eot_id|>" | |
start_header_id = "<|start_header_id|>" | |
end_header_id = "<|end_header_id|>" | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
model.config.pad_token_id = tokenizer.eos_token_id | |
def format_conversation(chat_history: List[Dict[str, str]], add_generation_prompt=False) -> str: | |
""" | |
Formats the chat history according to the model's chat template. | |
""" | |
formatted_history = [] | |
for i, message in enumerate(chat_history): | |
role, content = message["role"], message["content"] | |
formatted_message = f"{start_header_id}{role}{end_header_id}\n\n{content.strip()}{eos_token}" | |
if i == 0: | |
formatted_message = bos_token + formatted_message | |
formatted_history.append(formatted_message) | |
if add_generation_prompt: | |
formatted_history.append(f"{start_header_id}assistant{end_header_id}\n\n") | |
else: | |
formatted_history.append(eos_token) | |
return "".join(formatted_history) | |
def generate( | |
message: str, | |
chat_history: List[Dict[str, str]], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.4, | |
) -> Iterator[str]: | |
chat_history.append({"role": "user", "content": message}) | |
chat_context = format_conversation(chat_history, add_generation_prompt=True) | |
input_ids = tokenizer([chat_context], return_tensors="pt").input_ids | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
pad_token_id=tokenizer.eos_token_id, | |
repetition_penalty=repetition_penalty, | |
no_repeat_ngram_size=5, | |
early_stopping=False, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.4, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["A recipe for a chocolate cake:"], | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Explain the plot of Cinderella in a sentence."], | |
["Question: What is the capital of France?\nAnswer:"], | |
["Question: I am very tired, what should I do?\nAnswer:"], | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |