import os import sys import random import gradio as gr from datetime import datetime # Add `src` directory to Python path sys.path.append(os.path.join(os.path.dirname(__file__), "src")) # Import your agent class from src/txagent/txagent.py from txagent.txagent import TxAgent # ==== Environment Setup ==== current_dir = os.path.dirname(os.path.abspath(__file__)) os.environ["MKL_THREADING_LAYER"] = "GNU" os.environ["TOKENIZERS_PARALLELISM"] = "false" # ==== UI Content ==== DESCRIPTION = '''

TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools

''' INTRO = "Precision therapeutics require multimodal adaptive models..." LICENSE = "DISCLAIMER: THIS WEBSITE DOES NOT PROVIDE MEDICAL ADVICE..." PLACEHOLDER = '''

TxAgent

Click clear 🗑️ before asking a new question.

Click retry 🔄 to see another answer.

''' css = """ h1 { text-align: center; } #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } .gradio-accordion { margin-top: 0px !important; margin-bottom: 0px !important; } """ chat_css = """ .gr-button { font-size: 20px !important; } .gr-button svg { width: 32px !important; height: 32px !important; } """ # ==== Model Settings ==== model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B" rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B" new_tool_files = { "new_tool": os.path.join(current_dir, "data", "new_tool.json") } question_examples = [ ["Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering moderate hepatic impairment?"], ["A 30-year-old patient is on Prozac for depression and now diagnosed with WHIM syndrome. Is Xolremdi suitable?"] ] # === Initialize the model === agent = TxAgent( model_name, rag_model_name, tool_files_dict=new_tool_files, force_finish=True, enable_checker=True, step_rag_num=10, seed=100, additional_default_tools=["DirectResponse", "RequireClarification"] ) agent.init_model() # === Gradio interface logic === def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): return agent.run_gradio_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round) def update_seed(): seed = random.randint(0, 10000) return agent.update_parameters(seed=seed) # ✅ FIXED: handle_retry with return, no yield def handle_retry(history, retry_data, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): update_seed() new_history = history[:retry_data.index] previous_prompt = history[retry_data.index]["content"] result = agent.run_gradio_chat( new_history + [{"role": "user", "content": previous_prompt}], temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round ) # If it's a generator, convert to list to avoid Gradio errors if hasattr(result, "__iter__") and not isinstance(result, (str, dict, list)): result = list(result) return result # ===== Build Gradio Interface ===== with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) gr.Markdown(INTRO) temperature = gr.Slider(0, 1, step=0.1, value=0.3, label="Temperature") max_new_tokens = gr.Slider(128, 4096, step=1, value=1024, label="Max New Tokens") max_tokens = gr.Slider(128, 32000, step=1, value=8192, label="Max Total Tokens") max_round = gr.Slider(1, 50, step=1, value=30, label="Max Rounds") multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False) conversation_state = gr.State([]) chatbot = gr.Chatbot( label="TxAgent", placeholder=PLACEHOLDER, height=700, type="messages", show_copy_button=True ) # ✅ Retry logic added safely chatbot.retry( handle_retry, chatbot, chatbot, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round ) gr.ChatInterface( fn=handle_chat, chatbot=chatbot, additional_inputs=[ temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round ], examples=question_examples, css=chat_css, cache_examples=False, fill_height=True, fill_width=True, stop_btn=True ) gr.Markdown(LICENSE) # ✅ Ensure launch works on Hugging Face Spaces demo.launch()