import random import datetime import sys import os import torch import logging import json from importlib.resources import files from txagent import TxAgent from tooluniverse import ToolUniverse import gradio as gr # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Determine the directory where the current file is located current_dir = os.path.dirname(os.path.abspath(__file__)) os.environ["MKL_THREADING_LAYER"] = "GNU" os.environ["TOKENIZERS_PARALLELISM"] = "false" # Configuration CONFIG = { "model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B", "rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", "embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt", "tool_files": { "opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')), "fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')), "special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')), "monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')), "new_tool": os.path.join(current_dir, 'data', 'new_tool.json') } } DESCRIPTION = '''

TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools

''' INTRO = """ Precision therapeutics require multimodal adaptive models that provide personalized treatment recommendations. We introduce TxAgent, an AI agent that leverages multi-step reasoning and real-time biomedical knowledge retrieval across a toolbox of 211 expert-curated tools to navigate complex drug interactions, contraindications, and patient-specific treatment strategies, delivering evidence-grounded therapeutic decisions. """ LICENSE = """ We welcome your feedback and suggestions to enhance your experience with TxAgent, and if you're interested in collaboration, please email Marinka Zitnik and Shanghua Gao. ### Medical Advice Disclaimer DISCLAIMER: THIS WEBSITE DOES NOT PROVIDE MEDICAL ADVICE The information, including but not limited to, text, graphics, images and other material contained on this website are for informational purposes only. No material on this site is intended to be a substitute for professional medical advice, diagnosis or treatment. """ PLACEHOLDER = """

TxAgent

Tips before using TxAgent:

Please click clear🗑️ (top-right) to remove previous context before submitting a new question.

Click retry🔄 (below message) to get multiple versions of the answer.

""" css = """ h1 { text-align: center; display: block; } #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } .small-button button { font-size: 12px !important; padding: 4px 8px !important; height: 6px !important; width: 4px !important; } .gradio-accordion { margin-top: 0px !important; margin-bottom: 0px !important; } """ chat_css = """ .gr-button { font-size: 20px !important; } .gr-button svg { width: 32px !important; height: 32px !important; } """ def safe_load_embeddings(filepath: str) -> any: """Safely load embeddings with proper weights_only handling""" try: # First try with weights_only=True return torch.load(filepath, weights_only=True) except Exception as e: logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}") try: # Fallback to unsafe load if needed return torch.load(filepath, weights_only=False) except Exception as e: logger.error(f"Failed to load embeddings: {str(e)}") return None def patch_embedding_loading(): """Monkey-patch the embedding loading functionality""" try: from txagent.toolrag import ToolRAGModel original_load = ToolRAGModel.load_tool_desc_embedding def patched_load(self, tooluniverse): try: if not os.path.exists(CONFIG["embedding_filename"]): logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}") return False self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"]) # Updated tool loading approach if hasattr(tooluniverse, 'get_all_tools'): tools = tooluniverse.get_all_tools() elif hasattr(tooluniverse, 'tools'): tools = tooluniverse.tools else: logger.error("No method found to access tools from ToolUniverse") return False current_count = len(tools) embedding_count = len(self.tool_desc_embedding) if current_count != embedding_count: logger.warning(f"Tool count mismatch (tools: {current_count}, embeddings: {embedding_count})") if current_count < embedding_count: self.tool_desc_embedding = self.tool_desc_embedding[:current_count] logger.info(f"Truncated embeddings to match {current_count} tools") else: last_embedding = self.tool_desc_embedding[-1] padding = [last_embedding] * (current_count - embedding_count) self.tool_desc_embedding = torch.cat([self.tool_desc_embedding] + padding) logger.info(f"Padded embeddings to match {current_count} tools") return True except Exception as e: logger.error(f"Failed to load embeddings: {str(e)}") return False ToolRAGModel.load_tool_desc_embedding = patched_load logger.info("Successfully patched embedding loading") except Exception as e: logger.error(f"Failed to patch embedding loading: {str(e)}") raise def prepare_tool_files(): """Ensure tool files exist and are populated""" os.makedirs(os.path.join(current_dir, 'data'), exist_ok=True) if not os.path.exists(CONFIG["tool_files"]["new_tool"]): logger.info("Generating tool list using ToolUniverse...") try: tu = ToolUniverse() if hasattr(tu, 'get_all_tools'): tools = tu.get_all_tools() elif hasattr(tu, 'tools'): tools = tu.tools else: tools = [] logger.error("Could not access tools from ToolUniverse") with open(CONFIG["tool_files"]["new_tool"], "w") as f: json.dump(tools, f, indent=2) logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}") except Exception as e: logger.error(f"Failed to prepare tool files: {str(e)}") def create_agent(): """Create and initialize the TxAgent""" # Apply the embedding patch before creating the agent patch_embedding_loading() prepare_tool_files() # Initialize the agent try: agent = TxAgent( CONFIG["model_name"], CONFIG["rag_model_name"], tool_files_dict=CONFIG["tool_files"], force_finish=True, enable_checker=True, step_rag_num=10, seed=100, additional_default_tools=['DirectResponse', 'RequireClarification'] ) agent.init_model() return agent except Exception as e: logger.error(f"Failed to create agent: {str(e)}") raise def handle_chat_response(history, message, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): full_response = "" for chunk in message: if isinstance(chunk, dict): full_response += chunk.get("content", "") else: full_response += str(chunk) history.append({"role": "assistant", "content": full_response}) return history def update_model_parameters(agent, enable_finish, enable_rag, enable_summary, init_rag_num, step_rag_num, skip_last_k, summary_mode, summary_skip_last_k, summary_context_length, force_finish, seed): """Update model parameters""" updated_params = agent.update_parameters( enable_finish=enable_finish, enable_rag=enable_rag, enable_summary=enable_summary, init_rag_num=init_rag_num, step_rag_num=step_rag_num, skip_last_k=skip_last_k, summary_mode=summary_mode, summary_skip_last_k=summary_skip_last_k, summary_context_length=summary_context_length, force_finish=force_finish, seed=seed, ) return updated_params def update_seed(agent): """Update random seed""" seed = random.randint(0, 10000) updated_params = agent.update_parameters(seed=seed) return updated_params def handle_retry(agent, history, retry_data: gr.RetryData, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): """Handle retry functionality""" print("Updated seed:", update_seed(agent)) new_history = history[:retry_data.index] previous_prompt = history[retry_data.index]['content'] print("previous_prompt", previous_prompt) response = agent.run_gradio_chat(new_history + [{"role": "user", "content": previous_prompt}], temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round) yield from handle_chat_response(new_history, response, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round) PASSWORD = "mypassword" def check_password(input_password): """Check password for protected settings""" if input_password == PASSWORD: return gr.update(visible=True), "" else: return gr.update(visible=False), "Incorrect password, try again!" def create_demo(agent): """Create the Gradio interface""" default_temperature = 0.3 default_max_new_tokens = 1024 default_max_tokens = 81920 default_max_round = 30 question_examples = [ ['Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering the presence of moderate hepatic impairment?'], ['Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering the presence of severe hepatic impairment?'], ['A 30-year-old patient is taking Prozac to treat their depression. They were recently diagnosed with WHIM syndrome and require a treatment for that condition as well. Is Xolremdi suitable for this patient, considering contraindications?'], ] chatbot = gr.Chatbot(height=800, placeholder=PLACEHOLDER, label='TxAgent', show_copy_button=True) with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) gr.Markdown(INTRO) temperature_state = gr.State(value=default_temperature) max_new_tokens_state = gr.State(value=default_max_new_tokens) max_tokens_state = gr.State(value=default_max_tokens) max_round_state = gr.State(value=default_max_round) chatbot.retry( lambda *args: handle_retry(agent, *args), inputs=[chatbot, chatbot, temperature_state, max_new_tokens_state, max_tokens_state, gr.Checkbox(value=False, render=False), gr.State([]), max_round_state] ) with gr.Row(): with gr.Column(scale=4): msg = gr.Textbox(label="Input", placeholder="Type your question here...") with gr.Column(scale=1): submit_btn = gr.Button("Submit", variant="primary") with gr.Row(): clear_btn = gr.ClearButton([msg, chatbot]) def respond(message, chat_history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): response = agent.run_gradio_chat( chat_history + [{"role": "user", "content": message}], temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round ) return handle_chat_response(chat_history, response, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round) submit_btn.click( respond, inputs=[msg, chatbot, temperature_state, max_new_tokens_state, max_tokens_state, gr.Checkbox(value=False, render=False), gr.State([]), max_round_state], outputs=[chatbot] ) msg.submit( respond, inputs=[msg, chatbot, temperature_state, max_new_tokens_state, max_tokens_state, gr.Checkbox(value=False, render=False), gr.State([]), max_round_state], outputs=[chatbot] ) with gr.Accordion("Settings", open=False): temperature_slider = gr.Slider( minimum=0, maximum=1, step=0.1, value=default_temperature, label="Temperature" ) max_new_tokens_slider = gr.Slider( minimum=128, maximum=4096, step=1, value=default_max_new_tokens, label="Max new tokens" ) max_tokens_slider = gr.Slider( minimum=128, maximum=32000, step=1, value=default_max_tokens, label="Max tokens" ) max_round_slider = gr.Slider( minimum=0, maximum=50, step=1, value=default_max_round, label="Max round") temperature_slider.change( lambda x: x, inputs=temperature_slider, outputs=temperature_state) max_new_tokens_slider.change( lambda x: x, inputs=max_new_tokens_slider, outputs=max_new_tokens_state) max_tokens_slider.change( lambda x: x, inputs=max_tokens_slider, outputs=max_tokens_state) max_round_slider.change( lambda x: x, inputs=max_round_slider, outputs=max_round_state) password_input = gr.Textbox( label="Enter Password for More Settings", type="password") incorrect_message = gr.Textbox(visible=False, interactive=False) with gr.Accordion("⚙️ Advanced Settings", open=False, visible=False) as protected_accordion: with gr.Row(): with gr.Column(scale=1): with gr.Accordion("Model Settings", open=False): model_name_input = gr.Textbox( label="Enter model path", value=CONFIG["model_name"]) load_model_btn = gr.Button(value="Load Model") load_model_btn.click( agent.load_models, inputs=model_name_input, outputs=gr.Textbox(label="Status")) with gr.Column(scale=1): with gr.Accordion("Functional Parameters", open=False): enable_finish = gr.Checkbox(label="Enable Finish", value=True) enable_rag = gr.Checkbox(label="Enable RAG", value=True) enable_summary = gr.Checkbox(label="Enable Summary", value=False) init_rag_num = gr.Number(label="Initial RAG Num", value=0) step_rag_num = gr.Number(label="Step RAG Num", value=10) skip_last_k = gr.Number(label="Skip Last K", value=0) summary_mode = gr.Textbox(label="Summary Mode", value='step') summary_skip_last_k = gr.Number(label="Summary Skip Last K", value=0) summary_context_length = gr.Number(label="Summary Context Length", value=None) force_finish = gr.Checkbox(label="Force FinalAnswer", value=True) seed = gr.Number(label="Seed", value=100) submit_btn = gr.Button("Update Parameters") updated_parameters_output = gr.JSON() submit_btn.click( lambda *args: update_model_parameters(agent, *args), inputs=[enable_finish, enable_rag, enable_summary, init_rag_num, step_rag_num, skip_last_k, summary_mode, summary_skip_last_k, summary_context_length, force_finish, seed], outputs=updated_parameters_output ) submit_button = gr.Button("Submit") submit_button.click( check_password, inputs=password_input, outputs=[protected_accordion, incorrect_message] ) gr.Markdown(LICENSE) return demo def main(): """Main function to run the application""" try: agent = create_agent() demo = create_demo(agent) demo.launch(share=True) except Exception as e: logger.error(f"Application failed to start: {str(e)}") raise if __name__ == "__main__": main()