import os import sys import gradio as gr from multiprocessing import freeze_support import importlib import inspect sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src")) import txagent.txagent importlib.reload(txagent.txagent) from txagent.txagent import TxAgent current_dir = os.path.abspath(os.path.dirname(__file__)) os.environ["MKL_THREADING_LAYER"] = "GNU" os.environ["TOKENIZERS_PARALLELISM"] = "false" model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B" rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B" new_tool_files = { "new_tool": os.path.join(current_dir, "data", "new_tool.json") } question_examples = [ ["Given a patient with WHIM syndrome on antibiotics, is Xolremdi + fluconazole advisable?"], ["What treatment options exist for HER2+ breast cancer resistant to trastuzumab?"] ] def extract_sections(content): """ Example extractor splitting into sections. You should improve it to parse actual keys. """ return { "Summary": content[:1000], # simulate "Clinical Studies": content[1000:2500], "Drug Interactions": "See CYP3A4 interactions...", "Pharmacokinetics": "- Absorption: Oral\n- Half-life: ~24h\n- Metabolized by CYP3A4" } def create_ui(agent): with gr.Blocks() as demo: gr.Markdown("

TxAgent: Therapeutic Reasoning

") gr.Markdown("Ask therapeutic or biomedical questions. Results are categorized for readability.") temperature = gr.Slider(0, 1, value=0.3, label="Temperature") max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens") max_tokens = gr.Slider(128, 32000, value=8192, label="Max Total Tokens") max_round = gr.Slider(1, 50, value=30, label="Max Rounds") multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False) conversation_state = gr.State([]) chatbot = gr.Tabs() summary_box = gr.Markdown(label="Summary") studies_box = gr.Markdown(label="Clinical Studies") interactions_box = gr.Markdown(label="Drug Interactions") kinetics_box = gr.Markdown(label="Pharmacokinetics") with chatbot: with gr.TabItem("Summary"): summary_display = summary_box with gr.TabItem("Clinical Studies"): studies_display = studies_box with gr.TabItem("Drug Interactions"): interactions_display = interactions_box with gr.TabItem("Pharmacokinetics"): kinetics_display = kinetics_box message_input = gr.Textbox(placeholder="Ask your biomedical question...", show_label=False) send_button = gr.Button("Send", variant="primary") def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): generator = agent.run_gradio_chat( message=message, history=history, temperature=temperature, max_new_tokens=max_new_tokens, max_token=max_tokens, call_agent=multi_agent, conversation=conversation, max_round=max_round ) final_output = "" for update in generator: for m in update: role = m["role"] if isinstance(m, dict) else getattr(m, "role", "assistant") content = m["content"] if isinstance(m, dict) else getattr(m, "content", "") if role == "assistant": final_output += content + "\n" sections = extract_sections(final_output) return sections["Summary"], sections["Clinical Studies"], sections["Drug Interactions"], sections["Pharmacokinetics"] send_button.click( fn=handle_chat, inputs=[message_input, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round], outputs=[summary_box, studies_box, interactions_box, kinetics_box] ) message_input.submit( fn=handle_chat, inputs=[message_input, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round], outputs=[summary_box, studies_box, interactions_box, kinetics_box] ) gr.Examples(examples=question_examples, inputs=message_input) gr.Markdown("**DISCLAIMER**: For research only. Not medical advice.") return demo if __name__ == "__main__": freeze_support() try: agent = TxAgent( model_name=model_name, rag_model_name=rag_model_name, tool_files_dict=new_tool_files, force_finish=True, enable_checker=True, step_rag_num=10, seed=100, additional_default_tools=[] ) agent.init_model() if not hasattr(agent, "run_gradio_chat"): raise AttributeError("❌ TxAgent missing `run_gradio_chat`") demo = create_ui(agent) demo.launch(show_error=True) except Exception as e: print(f"❌ App failed to start: {e}") raise