import os import sys import random import gradio as gr from multiprocessing import freeze_support import importlib import inspect # === Fix path to include src/txagent sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src")) # === Import and reload to ensure correct file import txagent.txagent importlib.reload(txagent.txagent) from txagent.txagent import TxAgent # === Debug print print(">>> TxAgent loaded from:", inspect.getfile(TxAgent)) print(">>> TxAgent has run_gradio_chat:", hasattr(TxAgent, "run_gradio_chat")) # === Environment current_dir = os.path.abspath(os.path.dirname(__file__)) os.environ["MKL_THREADING_LAYER"] = "GNU" os.environ["TOKENIZERS_PARALLELISM"] = "false" # === Model config model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B" rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B" new_tool_files = { "new_tool": os.path.join(current_dir, "data", "new_tool.json") } # === Example prompts question_examples = [ ["Given a patient with WHIM syndrome on prophylactic antibiotics, is it advisable to co-administer Xolremdi with fluconazole?"], ["What treatment options exist for HER2+ breast cancer resistant to trastuzumab?"] ] # === UI creation def create_ui(agent): with gr.Blocks() as demo: gr.Markdown("

TxAgent: Therapeutic Reasoning

") gr.Markdown("Ask biomedical or therapeutic questions. Powered by step-by-step reasoning and tools.") temperature = gr.Slider(0, 1, value=0.3, label="Temperature") max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens") max_tokens = gr.Slider(128, 32000, value=8192, label="Max Total Tokens") max_round = gr.Slider(1, 50, value=30, label="Max Rounds") multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False) conversation_state = gr.State([]) chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages") message_input = gr.Textbox(placeholder="Ask your biomedical question...", show_label=False) send_button = gr.Button("Send", variant="primary") # === Core handler (streaming generator) def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): # Must yield a list of {"role": ..., "content": ...} dicts generator = agent.run_gradio_chat( message=message, history=history, temperature=temperature, max_new_tokens=max_new_tokens, max_token=max_tokens, call_agent=multi_agent, conversation=conversation, max_round=max_round ) for update in generator: # Convert to list of dicts if not already formatted = [ {"role": m["role"], "content": m["content"]} if isinstance(m, dict) else {"role": m.role, "content": m.content} for m in update ] yield formatted # === Trigger handlers send_button.click( fn=handle_chat, inputs=[message_input, chatbot, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round], outputs=chatbot ) message_input.submit( fn=handle_chat, inputs=[message_input, chatbot, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round], outputs=chatbot ) gr.Examples(examples=question_examples, inputs=message_input) gr.Markdown("**DISCLAIMER**: This demo is for research purposes only and does not provide medical advice.") return demo # === Startup if __name__ == "__main__": freeze_support() try: agent = TxAgent( model_name=model_name, rag_model_name=rag_model_name, tool_files_dict=new_tool_files, force_finish=True, enable_checker=True, step_rag_num=10, seed=100, additional_default_tools=["DirectResponse", "RequireClarification"] ) agent.init_model() if not hasattr(agent, "run_gradio_chat"): raise AttributeError("❌ TxAgent is missing `run_gradio_chat`.") demo = create_ui(agent) demo.launch(show_error=True) except Exception as e: print(f"❌ Application failed to start: {e}") raise