Update app.py
Browse files
app.py
CHANGED
@@ -4,42 +4,60 @@ import gradio as gr
|
|
4 |
from multiprocessing import freeze_support
|
5 |
import importlib
|
6 |
import inspect
|
|
|
7 |
|
|
|
8 |
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src"))
|
|
|
|
|
9 |
import txagent.txagent
|
10 |
importlib.reload(txagent.txagent)
|
11 |
from txagent.txagent import TxAgent
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
current_dir = os.path.abspath(os.path.dirname(__file__))
|
14 |
os.environ["MKL_THREADING_LAYER"] = "GNU"
|
15 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
16 |
|
|
|
17 |
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
|
18 |
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
|
19 |
new_tool_files = {
|
20 |
"new_tool": os.path.join(current_dir, "data", "new_tool.json")
|
21 |
}
|
22 |
|
|
|
23 |
question_examples = [
|
24 |
-
["Given a patient with WHIM syndrome on antibiotics, is Xolremdi
|
25 |
["What treatment options exist for HER2+ breast cancer resistant to trastuzumab?"]
|
26 |
]
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def create_ui(agent):
|
40 |
with gr.Blocks() as demo:
|
41 |
gr.Markdown("<h1 style='text-align: center;'>TxAgent: Therapeutic Reasoning</h1>")
|
42 |
-
gr.Markdown("Ask
|
43 |
|
44 |
temperature = gr.Slider(0, 1, value=0.3, label="Temperature")
|
45 |
max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens")
|
@@ -48,25 +66,11 @@ def create_ui(agent):
|
|
48 |
multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False)
|
49 |
conversation_state = gr.State([])
|
50 |
|
51 |
-
chatbot = gr.
|
52 |
-
summary_box = gr.Markdown(label="Summary")
|
53 |
-
studies_box = gr.Markdown(label="Clinical Studies")
|
54 |
-
interactions_box = gr.Markdown(label="Drug Interactions")
|
55 |
-
kinetics_box = gr.Markdown(label="Pharmacokinetics")
|
56 |
-
|
57 |
-
with chatbot:
|
58 |
-
with gr.TabItem("Summary"):
|
59 |
-
summary_display = summary_box
|
60 |
-
with gr.TabItem("Clinical Studies"):
|
61 |
-
studies_display = studies_box
|
62 |
-
with gr.TabItem("Drug Interactions"):
|
63 |
-
interactions_display = interactions_box
|
64 |
-
with gr.TabItem("Pharmacokinetics"):
|
65 |
-
kinetics_display = kinetics_box
|
66 |
-
|
67 |
message_input = gr.Textbox(placeholder="Ask your biomedical question...", show_label=False)
|
68 |
send_button = gr.Button("Send", variant="primary")
|
69 |
|
|
|
70 |
def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
|
71 |
generator = agent.run_gradio_chat(
|
72 |
message=message,
|
@@ -79,36 +83,32 @@ def create_ui(agent):
|
|
79 |
max_round=max_round
|
80 |
)
|
81 |
|
82 |
-
final_output = ""
|
83 |
for update in generator:
|
|
|
84 |
for m in update:
|
85 |
role = m["role"] if isinstance(m, dict) else getattr(m, "role", "assistant")
|
86 |
content = m["content"] if isinstance(m, dict) else getattr(m, "content", "")
|
87 |
-
if role == "assistant":
|
88 |
-
final_output += content + "\n"
|
89 |
|
90 |
-
|
91 |
-
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
inputs=[message_input, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round],
|
96 |
-
outputs=[summary_box, studies_box, interactions_box, kinetics_box]
|
97 |
-
)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
)
|
104 |
|
105 |
gr.Examples(examples=question_examples, inputs=message_input)
|
106 |
-
gr.Markdown("**DISCLAIMER**:
|
107 |
|
108 |
return demo
|
109 |
|
|
|
110 |
if __name__ == "__main__":
|
111 |
freeze_support()
|
|
|
112 |
try:
|
113 |
agent = TxAgent(
|
114 |
model_name=model_name,
|
@@ -118,12 +118,12 @@ if __name__ == "__main__":
|
|
118 |
enable_checker=True,
|
119 |
step_rag_num=10,
|
120 |
seed=100,
|
121 |
-
additional_default_tools=[]
|
122 |
)
|
123 |
agent.init_model()
|
124 |
|
125 |
if not hasattr(agent, "run_gradio_chat"):
|
126 |
-
raise AttributeError("
|
127 |
|
128 |
demo = create_ui(agent)
|
129 |
demo.launch(show_error=True)
|
|
|
4 |
from multiprocessing import freeze_support
|
5 |
import importlib
|
6 |
import inspect
|
7 |
+
import json
|
8 |
|
9 |
+
# Fix path to include src
|
10 |
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src"))
|
11 |
+
|
12 |
+
# Reload TxAgent from txagent.py
|
13 |
import txagent.txagent
|
14 |
importlib.reload(txagent.txagent)
|
15 |
from txagent.txagent import TxAgent
|
16 |
|
17 |
+
# Debug info
|
18 |
+
print(">>> TxAgent loaded from:", inspect.getfile(TxAgent))
|
19 |
+
print(">>> TxAgent has run_gradio_chat:", hasattr(TxAgent, "run_gradio_chat"))
|
20 |
+
|
21 |
+
# Env vars
|
22 |
current_dir = os.path.abspath(os.path.dirname(__file__))
|
23 |
os.environ["MKL_THREADING_LAYER"] = "GNU"
|
24 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
25 |
|
26 |
+
# Model config
|
27 |
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
|
28 |
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
|
29 |
new_tool_files = {
|
30 |
"new_tool": os.path.join(current_dir, "data", "new_tool.json")
|
31 |
}
|
32 |
|
33 |
+
# Sample questions
|
34 |
question_examples = [
|
35 |
+
["Given a patient with WHIM syndrome on prophylactic antibiotics, is it advisable to co-administer Xolremdi with fluconazole?"],
|
36 |
["What treatment options exist for HER2+ breast cancer resistant to trastuzumab?"]
|
37 |
]
|
38 |
|
39 |
+
# Helper: format assistant responses in collapsible panels
|
40 |
+
def format_collapsible(content):
|
41 |
+
if isinstance(content, (dict, list)):
|
42 |
+
try:
|
43 |
+
formatted = json.dumps(content, indent=2)
|
44 |
+
except Exception:
|
45 |
+
formatted = str(content)
|
46 |
+
else:
|
47 |
+
formatted = str(content)
|
48 |
+
|
49 |
+
return (
|
50 |
+
"<details style='border: 1px solid #ccc; padding: 8px; margin-top: 8px;'>"
|
51 |
+
"<summary style='font-weight: bold;'>Answer</summary>"
|
52 |
+
f"<pre style='white-space: pre-wrap;'>{formatted}</pre>"
|
53 |
+
"</details>"
|
54 |
+
)
|
55 |
+
|
56 |
+
# === UI setup
|
57 |
def create_ui(agent):
|
58 |
with gr.Blocks() as demo:
|
59 |
gr.Markdown("<h1 style='text-align: center;'>TxAgent: Therapeutic Reasoning</h1>")
|
60 |
+
gr.Markdown("Ask biomedical or therapeutic questions. Powered by step-by-step reasoning and tools.")
|
61 |
|
62 |
temperature = gr.Slider(0, 1, value=0.3, label="Temperature")
|
63 |
max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens")
|
|
|
66 |
multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False)
|
67 |
conversation_state = gr.State([])
|
68 |
|
69 |
+
chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
message_input = gr.Textbox(placeholder="Ask your biomedical question...", show_label=False)
|
71 |
send_button = gr.Button("Send", variant="primary")
|
72 |
|
73 |
+
# Main handler
|
74 |
def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
|
75 |
generator = agent.run_gradio_chat(
|
76 |
message=message,
|
|
|
83 |
max_round=max_round
|
84 |
)
|
85 |
|
|
|
86 |
for update in generator:
|
87 |
+
formatted = []
|
88 |
for m in update:
|
89 |
role = m["role"] if isinstance(m, dict) else getattr(m, "role", "assistant")
|
90 |
content = m["content"] if isinstance(m, dict) else getattr(m, "content", "")
|
|
|
|
|
91 |
|
92 |
+
if role == "assistant":
|
93 |
+
content = format_collapsible(content)
|
94 |
|
95 |
+
formatted.append({"role": role, "content": content})
|
96 |
+
yield formatted
|
|
|
|
|
|
|
97 |
|
98 |
+
# Button and Enter triggers
|
99 |
+
inputs = [message_input, chatbot, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round]
|
100 |
+
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
|
101 |
+
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
|
|
|
102 |
|
103 |
gr.Examples(examples=question_examples, inputs=message_input)
|
104 |
+
gr.Markdown("**DISCLAIMER**: This demo is for research purposes only and does not provide medical advice.")
|
105 |
|
106 |
return demo
|
107 |
|
108 |
+
# === Entry point
|
109 |
if __name__ == "__main__":
|
110 |
freeze_support()
|
111 |
+
|
112 |
try:
|
113 |
agent = TxAgent(
|
114 |
model_name=model_name,
|
|
|
118 |
enable_checker=True,
|
119 |
step_rag_num=10,
|
120 |
seed=100,
|
121 |
+
additional_default_tools=[] # Avoid loading unimplemented tools
|
122 |
)
|
123 |
agent.init_model()
|
124 |
|
125 |
if not hasattr(agent, "run_gradio_chat"):
|
126 |
+
raise AttributeError("TxAgent missing run_gradio_chat")
|
127 |
|
128 |
demo = create_ui(agent)
|
129 |
demo.launch(show_error=True)
|