|
import os |
|
import json |
|
import logging |
|
import torch |
|
from txagent import TxAgent |
|
import gradio as gr |
|
from huggingface_hub import hf_hub_download, snapshot_download |
|
from tooluniverse import ToolUniverse |
|
|
|
|
|
CONFIG = { |
|
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding.pt", |
|
"local_dir": "./models", |
|
"tool_files": { |
|
"new_tool": "./data/new_tool.json" |
|
} |
|
} |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
def prepare_tool_files(): |
|
os.makedirs("./data", exist_ok=True) |
|
if not os.path.exists(CONFIG["tool_files"]["new_tool"]): |
|
logger.info("Generating tool list using ToolUniverse...") |
|
tu = ToolUniverse() |
|
tools = tu.get_all_tools() |
|
with open(CONFIG["tool_files"]["new_tool"], "w") as f: |
|
json.dump(tools, f, indent=2) |
|
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}") |
|
|
|
|
|
def download_model_files(): |
|
os.makedirs(CONFIG["local_dir"], exist_ok=True) |
|
print("Downloading model files...") |
|
|
|
snapshot_download( |
|
repo_id=CONFIG["model_name"], |
|
local_dir=os.path.join(CONFIG["local_dir"], CONFIG["model_name"]), |
|
resume_download=True |
|
) |
|
|
|
snapshot_download( |
|
repo_id=CONFIG["rag_model_name"], |
|
local_dir=os.path.join(CONFIG["local_dir"], CONFIG["rag_model_name"]), |
|
resume_download=True |
|
) |
|
|
|
try: |
|
hf_hub_download( |
|
repo_id=CONFIG["rag_model_name"], |
|
filename=CONFIG["embedding_filename"], |
|
local_dir=CONFIG["local_dir"], |
|
resume_download=True |
|
) |
|
print("Embeddings file downloaded successfully") |
|
except Exception as e: |
|
print(f"Could not download embeddings file: {e}") |
|
print("Will attempt to generate it instead") |
|
|
|
def generate_embeddings(agent): |
|
embedding_path = os.path.join(CONFIG["local_dir"], CONFIG["embedding_filename"]) |
|
|
|
if os.path.exists(embedding_path): |
|
print("Embeddings file already exists") |
|
return |
|
|
|
print("Generating missing tool embeddings...") |
|
try: |
|
tools = agent.tooluniverse.get_all_tools() |
|
descriptions = [tool["description"] for tool in tools] |
|
embeddings = agent.rag_model.generate_embeddings(descriptions) |
|
torch.save(embeddings, embedding_path) |
|
agent.rag_model.tool_desc_embedding = embeddings |
|
print(f"Embeddings saved to {embedding_path}") |
|
except Exception as e: |
|
print(f"Failed to generate embeddings: {e}") |
|
raise |
|
|
|
class TxAgentApp: |
|
def __init__(self): |
|
self.agent = None |
|
self.is_initialized = False |
|
|
|
def initialize(self): |
|
if self.is_initialized: |
|
return "Already initialized" |
|
|
|
try: |
|
self.agent = TxAgent( |
|
CONFIG["model_name"], |
|
CONFIG["rag_model_name"], |
|
tool_files_dict=CONFIG["tool_files"], |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=10, |
|
seed=100, |
|
additional_default_tools=["DirectResponse", "RequireClarification"] |
|
) |
|
self.agent.init_model() |
|
generate_embeddings(self.agent) |
|
self.is_initialized = True |
|
return "✅ TxAgent initialized successfully" |
|
except Exception as e: |
|
return f"❌ Initialization failed: {str(e)}" |
|
|
|
def chat(self, message, history): |
|
if not self.is_initialized: |
|
return history + [(message, "⚠️ Error: Model not initialized")] |
|
|
|
try: |
|
response = "" |
|
for chunk in self.agent.run_gradio_chat( |
|
message=message, |
|
history=history, |
|
temperature=0.3, |
|
max_new_tokens=1024, |
|
max_tokens=8192, |
|
multi_agent=False, |
|
conversation=[], |
|
max_round=30 |
|
): |
|
response += chunk |
|
|
|
return history + [(message, response)] |
|
except Exception as e: |
|
return history + [(message, f"Error: {str(e)}")] |
|
|
|
def create_interface(): |
|
app = TxAgentApp() |
|
with gr.Blocks(title="TxAgent") as demo: |
|
gr.Markdown("# 🧠 TxAgent: Therapeutic Reasoning AI") |
|
|
|
with gr.Row(): |
|
init_btn = gr.Button("Initialize Model", variant="primary") |
|
init_status = gr.Textbox(label="Initialization Status") |
|
|
|
chatbot = gr.Chatbot(height=600, label="Conversation") |
|
msg = gr.Textbox(label="Your Question") |
|
submit_btn = gr.Button("Submit") |
|
|
|
gr.Examples( |
|
examples=[ |
|
"How to adjust Journavx dosage for hepatic impairment?", |
|
"Is Xolremdi safe with Prozac for WHIM syndrome?", |
|
"Warfarin-Amiodarone contraindications?" |
|
], |
|
inputs=msg |
|
) |
|
|
|
init_btn.click(fn=app.initialize, outputs=init_status) |
|
msg.submit(fn=app.chat, inputs=[msg, chatbot], outputs=chatbot) |
|
submit_btn.click(fn=app.chat, inputs=[msg, chatbot], outputs=chatbot) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
prepare_tool_files() |
|
download_model_files() |
|
interface = create_interface() |
|
interface.launch(server_name="0.0.0.0", server_port=7860, share=False) |
|
|