test / app.py
Ali2206's picture
Update app.py
ecaf6bd verified
raw
history blame
5.21 kB
import os
import sys
import gradio as gr
from multiprocessing import freeze_support
import importlib
import inspect
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src"))
import txagent.txagent
importlib.reload(txagent.txagent)
from txagent.txagent import TxAgent
current_dir = os.path.abspath(os.path.dirname(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
new_tool_files = {
"new_tool": os.path.join(current_dir, "data", "new_tool.json")
}
question_examples = [
["Given a patient with WHIM syndrome on antibiotics, is Xolremdi + fluconazole advisable?"],
["What treatment options exist for HER2+ breast cancer resistant to trastuzumab?"]
]
def extract_sections(content):
"""
Example extractor splitting into sections. You should improve it to parse actual keys.
"""
return {
"Summary": content[:1000], # simulate
"Clinical Studies": content[1000:2500],
"Drug Interactions": "See CYP3A4 interactions...",
"Pharmacokinetics": "- Absorption: Oral\n- Half-life: ~24h\n- Metabolized by CYP3A4"
}
def create_ui(agent):
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>TxAgent: Therapeutic Reasoning</h1>")
gr.Markdown("Ask therapeutic or biomedical questions. Results are categorized for readability.")
temperature = gr.Slider(0, 1, value=0.3, label="Temperature")
max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens")
max_tokens = gr.Slider(128, 32000, value=8192, label="Max Total Tokens")
max_round = gr.Slider(1, 50, value=30, label="Max Rounds")
multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False)
conversation_state = gr.State([])
chatbot = gr.Tabs()
summary_box = gr.Markdown(label="Summary")
studies_box = gr.Markdown(label="Clinical Studies")
interactions_box = gr.Markdown(label="Drug Interactions")
kinetics_box = gr.Markdown(label="Pharmacokinetics")
with chatbot:
with gr.TabItem("Summary"):
summary_display = summary_box
with gr.TabItem("Clinical Studies"):
studies_display = studies_box
with gr.TabItem("Drug Interactions"):
interactions_display = interactions_box
with gr.TabItem("Pharmacokinetics"):
kinetics_display = kinetics_box
message_input = gr.Textbox(placeholder="Ask your biomedical question...", show_label=False)
send_button = gr.Button("Send", variant="primary")
def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
generator = agent.run_gradio_chat(
message=message,
history=history,
temperature=temperature,
max_new_tokens=max_new_tokens,
max_token=max_tokens,
call_agent=multi_agent,
conversation=conversation,
max_round=max_round
)
final_output = ""
for update in generator:
for m in update:
role = m["role"] if isinstance(m, dict) else getattr(m, "role", "assistant")
content = m["content"] if isinstance(m, dict) else getattr(m, "content", "")
if role == "assistant":
final_output += content + "\n"
sections = extract_sections(final_output)
return sections["Summary"], sections["Clinical Studies"], sections["Drug Interactions"], sections["Pharmacokinetics"]
send_button.click(
fn=handle_chat,
inputs=[message_input, [], temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round],
outputs=[summary_box, studies_box, interactions_box, kinetics_box]
)
message_input.submit(
fn=handle_chat,
inputs=[message_input, [], temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round],
outputs=[summary_box, studies_box, interactions_box, kinetics_box]
)
gr.Examples(examples=question_examples, inputs=message_input)
gr.Markdown("**DISCLAIMER**: For research only. Not medical advice.")
return demo
if __name__ == "__main__":
freeze_support()
try:
agent = TxAgent(
model_name=model_name,
rag_model_name=rag_model_name,
tool_files_dict=new_tool_files,
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=[]
)
agent.init_model()
if not hasattr(agent, "run_gradio_chat"):
raise AttributeError("❌ TxAgent missing `run_gradio_chat`")
demo = create_ui(agent)
demo.launch(show_error=True)
except Exception as e:
print(f"❌ App failed to start: {e}")
raise