|
import os |
|
import json |
|
import logging |
|
import torch |
|
from txagent import TxAgent |
|
import gradio as gr |
|
from huggingface_hub import snapshot_download |
|
from tooluniverse import ToolUniverse |
|
import time |
|
from functools import partial |
|
from requests.adapters import HTTPAdapter |
|
from requests import Session |
|
from urllib3.util.retry import Retry |
|
|
|
|
|
CONFIG = { |
|
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt", |
|
"local_dir": "./models", |
|
"tool_files": { |
|
"new_tool": "./data/new_tool.json" |
|
}, |
|
"download_timeout": 300, |
|
"max_retries": 3, |
|
"retry_delay": 10 |
|
} |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
def create_custom_session(): |
|
"""Create a session with custom timeout and retry settings""" |
|
session = Session() |
|
retries = Retry( |
|
total=CONFIG["max_retries"], |
|
backoff_factor=1, |
|
status_forcelist=[500, 502, 503, 504] |
|
) |
|
adapter = HTTPAdapter( |
|
max_retries=retries, |
|
pool_connections=10, |
|
pool_maxsize=10 |
|
) |
|
session.mount("http://", adapter) |
|
session.mount("https://", adapter) |
|
return session |
|
|
|
def prepare_tool_files(): |
|
os.makedirs("./data", exist_ok=True) |
|
if not os.path.exists(CONFIG["tool_files"]["new_tool"]): |
|
logger.info("Generating tool list using ToolUniverse...") |
|
tu = ToolUniverse() |
|
tools = tu.get_all_tools() |
|
with open(CONFIG["tool_files"]["new_tool"], "w") as f: |
|
json.dump(tools, f, indent=2) |
|
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}") |
|
|
|
def download_with_retry(repo_id, local_dir): |
|
retry_count = 0 |
|
custom_session = create_custom_session() |
|
|
|
while retry_count < CONFIG["max_retries"]: |
|
try: |
|
snapshot_download( |
|
repo_id=repo_id, |
|
local_dir=local_dir, |
|
resume_download=True, |
|
local_dir_use_symlinks=False, |
|
use_auth_token=True, |
|
session=custom_session |
|
) |
|
return True |
|
except Exception as e: |
|
retry_count += 1 |
|
logger.error(f"Attempt {retry_count} failed for {repo_id}: {str(e)}") |
|
if retry_count < CONFIG["max_retries"]: |
|
wait_time = CONFIG["retry_delay"] * retry_count |
|
logger.info(f"Waiting {wait_time} seconds before retry...") |
|
time.sleep(wait_time) |
|
return False |
|
|
|
def download_model_files(): |
|
os.makedirs(CONFIG["local_dir"], exist_ok=True) |
|
logger.info("Downloading model files...") |
|
|
|
|
|
logger.info(f"Downloading {CONFIG['model_name']}...") |
|
if not download_with_retry( |
|
CONFIG["model_name"], |
|
os.path.join(CONFIG["local_dir"], CONFIG["model_name"]) |
|
): |
|
raise RuntimeError(f"Failed to download {CONFIG['model_name']} after {CONFIG['max_retries']} attempts") |
|
|
|
|
|
logger.info(f"Downloading {CONFIG['rag_model_name']}...") |
|
if not download_with_retry( |
|
CONFIG["rag_model_name"], |
|
os.path.join(CONFIG["local_dir"], CONFIG["rag_model_name"]) |
|
): |
|
raise RuntimeError(f"Failed to download {CONFIG['rag_model_name']} after {CONFIG['max_retries']} attempts") |
|
|
|
logger.info("All model files downloaded successfully") |
|
|
|
def load_embeddings(agent): |
|
embedding_path = CONFIG["embedding_filename"] |
|
if os.path.exists(embedding_path): |
|
logger.info("✅ Loading pre-generated embeddings file") |
|
try: |
|
embeddings = torch.load(embedding_path) |
|
agent.rag_model.tool_desc_embedding = embeddings |
|
return |
|
except Exception as e: |
|
logger.error(f"Failed to load embeddings: {e}") |
|
|
|
|
|
logger.info("Generating tool embeddings...") |
|
try: |
|
tools = agent.tooluniverse.get_all_tools() |
|
descriptions = [tool["description"] for tool in tools] |
|
embeddings = agent.rag_model.generate_embeddings(descriptions) |
|
torch.save(embeddings, embedding_path) |
|
agent.rag_model.tool_desc_embedding = embeddings |
|
logger.info(f"Embeddings saved to {embedding_path}") |
|
except Exception as e: |
|
logger.error(f"Failed to generate embeddings: {e}") |
|
raise |
|
|
|
class TxAgentApp: |
|
def __init__(self): |
|
self.agent = None |
|
self.is_initialized = False |
|
|
|
def initialize(self): |
|
if self.is_initialized: |
|
return "Already initialized" |
|
|
|
try: |
|
logger.info("Initializing TxAgent...") |
|
self.agent = TxAgent( |
|
CONFIG["model_name"], |
|
CONFIG["rag_model_name"], |
|
tool_files_dict=CONFIG["tool_files"], |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=10, |
|
seed=100, |
|
additional_default_tools=["DirectResponse", "RequireClarification"] |
|
) |
|
logger.info("Initializing models...") |
|
self.agent.init_model() |
|
logger.info("Loading embeddings...") |
|
load_embeddings(self.agent) |
|
self.is_initialized = True |
|
logger.info("✅ TxAgent initialized successfully") |
|
return "✅ TxAgent initialized successfully" |
|
except Exception as e: |
|
logger.error(f"Initialization failed: {str(e)}") |
|
return f"❌ Initialization failed: {str(e)}" |
|
|
|
def chat(self, message, history): |
|
if not self.is_initialized: |
|
return history + [(message, "⚠️ Error: Model not initialized. Please click 'Initialize Model' first.")] |
|
|
|
try: |
|
response = "" |
|
for chunk in self.agent.run_gradio_chat( |
|
message=message, |
|
history=history, |
|
temperature=0.3, |
|
max_new_tokens=1024, |
|
max_tokens=8192, |
|
multi_agent=False, |
|
conversation=[], |
|
max_round=30 |
|
): |
|
response += chunk |
|
|
|
return history + [(message, response)] |
|
except Exception as e: |
|
logger.error(f"Chat error: {str(e)}") |
|
return history + [(message, f"Error: {str(e)}")] |
|
|
|
def create_interface(): |
|
app = TxAgentApp() |
|
with gr.Blocks(title="TxAgent", css=".gradio-container {max-width: 900px !important}") as demo: |
|
gr.Markdown(""" |
|
# 🧠 TxAgent: Therapeutic Reasoning AI |
|
### A specialized AI for clinical decision support and therapeutic reasoning |
|
""") |
|
|
|
with gr.Row(): |
|
init_btn = gr.Button("Initialize Model", variant="primary") |
|
init_status = gr.Textbox(label="Initialization Status", interactive=False) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot(height=600, label="Conversation", bubble_full_width=False) |
|
msg = gr.Textbox(label="Your Question", placeholder="Enter your clinical question here...") |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
with gr.Column(scale=1): |
|
gr.Markdown("### Example Questions:") |
|
gr.Examples( |
|
examples=[ |
|
"How to adjust Journavx dosage for hepatic impairment?", |
|
"Is Xolremdi safe with Prozac for WHIM syndrome?", |
|
"Warfarin-Amiodarone contraindications?", |
|
"Alternative treatments for EGFR-positive NSCLC?" |
|
], |
|
inputs=msg, |
|
label="Click to try" |
|
) |
|
|
|
init_btn.click( |
|
fn=app.initialize, |
|
outputs=init_status, |
|
api_name="initialize" |
|
) |
|
msg.submit( |
|
fn=app.chat, |
|
inputs=[msg, chatbot], |
|
outputs=chatbot, |
|
api_name="chat" |
|
) |
|
submit_btn.click( |
|
fn=app.chat, |
|
inputs=[msg, chatbot], |
|
outputs=chatbot |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
try: |
|
logger.info("Preparing tool files...") |
|
prepare_tool_files() |
|
|
|
logger.info("Downloading model files (if needed)...") |
|
download_model_files() |
|
|
|
logger.info("Launching interface...") |
|
interface = create_interface() |
|
interface.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
share=False, |
|
show_error=True |
|
) |
|
except Exception as e: |
|
logger.error(f"Application failed to start: {str(e)}") |
|
raise |