test / app.py
Ali2206's picture
Update app.py
88ae38d verified
raw
history blame
9.12 kB
import random
import os
import torch
import logging
import json
from importlib.resources import files
from txagent import TxAgent
from tooluniverse import ToolUniverse
import gradio as gr
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Configuration
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"tool_files": {
"opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')),
"fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')),
"special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')),
"monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')),
"new_tool": os.path.join(current_dir, 'data', 'new_tool.json')
}
}
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools</h1>
</div>
'''
INTRO = """
Precision therapeutics require multimodal adaptive models that provide personalized treatment recommendations.
We introduce TxAgent, an AI agent that leverages multi-step reasoning and real-time biomedical knowledge
retrieval across a toolbox of 211 expert-curated tools to navigate complex drug interactions,
contraindications, and patient-specific treatment strategies, delivering evidence-grounded therapeutic decisions.
"""
LICENSE = """
We welcome your feedback and suggestions to enhance your experience with TxAgent, and if you're interested
in collaboration, please email Marinka Zitnik and Shanghua Gao.
### Medical Advice Disclaimer
DISCLAIMER: THIS WEBSITE DOES NOT PROVIDE MEDICAL ADVICE
The information, including but not limited to, text, graphics, images and other material contained on this
website are for informational purposes only. No material on this site is intended to be a substitute for
professional medical advice, diagnosis or treatment.
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">TxAgent</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Tips before using TxAgent:</p>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Please click clear🗑️ (top-right) to remove previous context before submitting a new question.</p>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Click retry🔄 (below message) to get multiple versions of the answer.</p>
</div>
"""
def safe_load_embeddings(filepath: str):
"""Handle embedding loading with fallbacks"""
try:
return torch.load(filepath, weights_only=True)
except Exception as e:
logger.warning(f"Secure load failed, trying without weights_only: {str(e)}")
try:
return torch.load(filepath, weights_only=False)
except Exception as e:
logger.error(f"Failed to load embeddings: {str(e)}")
return None
def get_tools_from_universe(tooluniverse):
"""Flexible tool extraction from ToolUniverse"""
if hasattr(tooluniverse, 'get_all_tools'):
return tooluniverse.get_all_tools()
elif hasattr(tooluniverse, 'tools'):
return tooluniverse.tools
elif hasattr(tooluniverse, 'list_tools'):
return tooluniverse.list_tools()
else:
logger.error("Could not find any tool access method in ToolUniverse")
# Try to load from files directly as fallback
tools = []
for tool_file in CONFIG["tool_files"].values():
if os.path.exists(tool_file):
with open(tool_file, 'r') as f:
tools.extend(json.load(f))
return tools if tools else None
def prepare_tool_files():
"""Ensure tool files exist and are populated"""
os.makedirs(os.path.join(current_dir, 'data'), exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
logger.info("Generating tool list...")
try:
tu = ToolUniverse()
tools = get_tools_from_universe(tu)
if tools:
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools")
else:
logger.error("No tools could be loaded")
except Exception as e:
logger.error(f"Tool file preparation failed: {str(e)}")
def create_agent():
"""Create and initialize the TxAgent with robust error handling"""
prepare_tool_files()
try:
agent = TxAgent(
model_name=CONFIG["model_name"],
rag_model_name=CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=['DirectResponse', 'RequireClarification']
)
agent.init_model()
return agent
except Exception as e:
logger.error(f"Agent creation failed: {str(e)}")
raise
def format_response(history, message):
"""Properly format responses for Gradio Chatbot"""
if isinstance(message, (str, dict)):
return history + [[None, str(message)]]
elif hasattr(message, '__iter__'):
full_response = ""
for chunk in message:
if isinstance(chunk, dict):
full_response += chunk.get("content", "")
else:
full_response += str(chunk)
return history + [[None, full_response]]
return history + [[None, str(message)]]
def create_demo(agent):
"""Create the Gradio interface with proper message handling"""
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown(INTRO)
chatbot = gr.Chatbot(
height=800,
label='TxAgent',
show_copy_button=True,
bubble_full_width=False
)
msg = gr.Textbox(label="Input", placeholder="Type your question...")
clear = gr.ClearButton([msg, chatbot])
def respond(message, chat_history):
try:
# Convert Gradio history to agent format
agent_history = []
for user_msg, bot_msg in chat_history:
if user_msg:
agent_history.append({"role": "user", "content": user_msg})
if bot_msg:
agent_history.append({"role": "assistant", "content": bot_msg})
# Get response from agent
response = agent.run_gradio_chat(
agent_history + [{"role": "user", "content": message}],
temperature=0.3,
max_new_tokens=1024,
max_tokens=81920,
multi_agent=False,
conversation=[],
max_round=30
)
# Format the response properly
full_response = ""
for chunk in response:
if isinstance(chunk, dict):
full_response += chunk.get("content", "")
else:
full_response += str(chunk)
return chat_history + [(message, full_response)]
except Exception as e:
logger.error(f"Error in response handling: {str(e)}")
return chat_history + [(message, f"Error: {str(e)}")]
msg.submit(respond, [msg, chatbot], [chatbot])
clear.click(lambda: [], None, [chatbot])
# Add settings section
with gr.Accordion("Settings", open=False):
gr.Markdown("Adjust model parameters here")
with gr.Row():
temperature = gr.Slider(0, 1, value=0.3, label="Temperature")
max_new_tokens = gr.Slider(128, 4096, value=1024, step=1, label="Max New Tokens")
with gr.Row():
max_tokens = gr.Slider(128, 32000, value=81920, step=1, label="Max Tokens")
max_round = gr.Slider(1, 50, value=30, step=1, label="Max Round")
return demo
def main():
"""Main application entry point"""
try:
agent = create_agent()
demo = create_demo(agent)
demo.launch(server_name="0.0.0.0", server_port=7860)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise
if __name__ == "__main__":
main()