test / app.py
Ali2206's picture
Update app.py
5680e29 verified
raw
history blame
7.13 kB
import os
import json
import torch
import logging
import numpy
import gradio as gr
import torch.serialization
from importlib.resources import files
from txagent import TxAgent
from tooluniverse import ToolUniverse
# Patch PyTorch to allow loading old numpy pickles
torch.serialization.add_safe_globals([
numpy.core.multiarray._reconstruct,
numpy.ndarray,
numpy.dtype
])
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
current_dir = os.path.dirname(os.path.abspath(__file__))
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"tool_files": {
"opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')),
"fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')),
"special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')),
"monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')),
"new_tool": os.path.join(current_dir, 'data', 'new_tool.json')
}
}
def safe_load_embeddings(filepath):
try:
return torch.load(filepath, weights_only=True)
except Exception as e:
logger.warning(f"Retrying with weights_only=False due to: {e}")
try:
return torch.load(filepath, weights_only=False)
except Exception as e:
logger.error(f"Failed to load embeddings: {e}")
return None
def patch_embedding_loading():
from txagent.toolrag import ToolRAGModel
def patched_load(self, tooluniverse):
try:
if not os.path.exists(CONFIG["embedding_filename"]):
return False
self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"])
if self.tool_desc_embedding is None:
logger.error("Tool embedding file could not be loaded.")
return False
tools = tooluniverse.get_all_tools() if hasattr(tooluniverse, "get_all_tools") else getattr(tooluniverse, "tools", [])
if len(tools) != len(self.tool_desc_embedding):
logger.warning("Tool count mismatch.")
if len(self.tool_desc_embedding) > len(tools):
self.tool_desc_embedding = self.tool_desc_embedding[:len(tools)]
else:
padding = self.tool_desc_embedding[-1].unsqueeze(0).repeat(len(tools) - len(self.tool_desc_embedding), 1)
self.tool_desc_embedding = torch.cat([self.tool_desc_embedding, padding], dim=0)
return True
except Exception as e:
logger.error(f"Embedding load failed: {e}")
return False
ToolRAGModel.load_tool_desc_embedding = patched_load
def prepare_tool_files():
os.makedirs(os.path.join(current_dir, 'data'), exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
try:
tu = ToolUniverse()
tools = tu.get_all_tools() if hasattr(tu, "get_all_tools") else getattr(tu, "tools", [])
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
except Exception as e:
logger.error(f"Tool generation failed: {e}")
def create_agent():
patch_embedding_loading()
prepare_tool_files()
try:
tu = ToolUniverse()
tools = tu.get_all_tools() if hasattr(tu, "get_all_tools") else getattr(tu, "tools", [])
available_tool_names = [t["name"] for t in tools]
additional_default_tools = [t for t in ["DirectResponse", "RequireClarification"] if t in available_tool_names]
agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=42,
additional_default_tools=additional_default_tools
)
agent.init_model()
return agent
except Exception as e:
logger.error(f"Agent initialization failed: {e}")
raise
def respond(msg, chat_history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
if not isinstance(msg, str) or len(msg.strip()) <= 10:
chat_history.append({"role": "assistant", "content": "Hi, I am TxAgent. Please provide a valid message longer than 10 characters."})
return chat_history
message = msg.strip()
chat_history.append({"role": "user", "content": message})
formatted_history = [(m["role"], m["content"]) for m in chat_history if "role" in m and "content" in m]
try:
response_generator = agent.run_gradio_chat(
message=message,
history=formatted_history,
temperature=temperature,
max_new_tokens=max_new_tokens,
max_token=max_tokens,
call_agent=multi_agent,
conversation=conversation,
max_round=max_round,
seed=42,
call_agent_level=None,
sub_agent_task=None
)
collected = ""
for chunk in response_generator:
if isinstance(chunk, dict) and "content" in chunk:
collected += chunk["content"]
elif isinstance(chunk, str):
collected += chunk
elif chunk is not None:
collected += str(chunk)
chat_history.append({"role": "assistant", "content": collected or "⚠️ No content returned."})
except Exception as e:
chat_history.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
return chat_history
def create_demo(agent):
with gr.Blocks(css=".gr-button { font-size: 18px !important; }") as demo:
chatbot = gr.Chatbot(label="TxAgent", type="messages", render_markdown=True)
msg = gr.Textbox(label="Your question", placeholder="Ask a biomedical question...", scale=6)
with gr.Row():
temp = gr.Slider(0, 1, value=0.3, label="Temperature")
max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens")
max_tokens = gr.Slider(128, 81920, value=81920, label="Max Total Tokens")
max_rounds = gr.Slider(1, 30, value=30, label="Max Rounds")
multi_agent = gr.Checkbox(label="Multi-Agent Mode")
submit = gr.Button("Ask TxAgent")
submit.click(
respond,
inputs=[msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, gr.State([]), max_rounds],
outputs=[chatbot]
)
return demo
def main():
global agent
agent = create_agent()
demo = create_demo(agent)
demo.launch(share=False)
if __name__ == "__main__":
main()