File size: 7,135 Bytes
4b0f1a8 167b103 b8c0ae3 59ced24 167b103 12efdad f2d6e83 59ced24 a87f861 f2d6e83 59ced24 167b103 a87f861 12efdad 70839bb 58353ee 849209d 167b103 58353ee 167b103 f2d6e83 dffc0b0 f2d6e83 dffc0b0 f2d6e83 12efdad 59ced24 4b0f1a8 12efdad 59ced24 4b0f1a8 849209d 4b0f1a8 f2d6e83 63950ea f2d6e83 63950ea a87f861 63950ea dffc0b0 63950ea dffc0b0 4b0f1a8 35da672 167b103 4b0f1a8 59ced24 4b0f1a8 849209d 4b0f1a8 e014e82 4b0f1a8 167b103 92abf33 4b0f1a8 e014e82 849209d 4b0f1a8 35da672 849209d 4b0f1a8 59ced24 849209d 35da672 63950ea f2d6e83 35da672 849209d 4b0f1a8 59ced24 849209d 63950ea 849209d 63950ea 849209d 35da672 849209d 35da672 849209d 35da672 849209d 8e533b3 70839bb 35da672 63950ea 849209d dffc0b0 35da672 849209d 35da672 849209d 35da672 dffc0b0 35da672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from tooluniverse import ToolUniverse
# Configuration with hardcoded embedding file
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"tool_files": {
"new_tool": "./data/new_tool.json"
}
}
# Logging setup
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def prepare_tool_files():
os.makedirs("./data", exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
logger.info("Generating tool list using ToolUniverse...")
tu = ToolUniverse()
tools = tu.get_all_tools()
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
def patch_toolrag_class():
"""Monkey-patch the ToolRAG class to use our embedding file and handle tool count mismatch"""
from txagent.toolrag import ToolRAG
original_load = ToolRAG.load_tool_desc_embedding
def patched_load(self, tooluniverse):
try:
# Load our specific embedding file
self.tool_desc_embedding = torch.load(CONFIG["embedding_filename"])
# Get current tools and their count
tools = tooluniverse.get_all_tools()
current_tool_count = len(tools)
embedding_count = len(self.tool_desc_embedding)
# If counts don't match, truncate or pad as needed
if current_tool_count != embedding_count:
logger.warning(f"Tool count mismatch! Tools: {current_tool_count}, Embeddings: {embedding_count}")
if current_tool_count < embedding_count:
# Truncate embeddings to match tool count
self.tool_desc_embedding = self.tool_desc_embedding[:current_tool_count]
logger.warning(f"Truncated embeddings to {current_tool_count} vectors")
else:
# Pad with zeros (last embedding) if tools > embeddings
last_embedding = self.tool_desc_embedding[-1]
padding = [last_embedding] * (current_tool_count - embedding_count)
self.tool_desc_embedding = torch.cat([self.tool_desc_embedding] + padding)
logger.warning(f"Padded embeddings with {current_tool_count - embedding_count} vectors")
return True
except Exception as e:
logger.error(f"Failed to load embeddings: {str(e)}")
return False
# Apply the patch
ToolRAG.load_tool_desc_embedding = patched_load
class TxAgentApp:
def __init__(self):
self.agent = None
self.is_initialized = False
def initialize(self):
if self.is_initialized:
return "✅ Already initialized"
try:
# Apply our patch before initialization
patch_toolrag_class()
logger.info("Initializing TxAgent...")
self.agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=["DirectResponse", "RequireClarification"]
)
logger.info("Loading models...")
self.agent.init_model()
self.is_initialized = True
return "✅ TxAgent initialized successfully"
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
return f"❌ Initialization failed: {str(e)}"
def chat(self, message, history):
if not self.is_initialized:
return history + [(message, "⚠️ Please initialize the model first")]
try:
response = ""
for chunk in self.agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_tokens=8192,
multi_agent=False,
conversation=[],
max_round=30
):
response += chunk
yield history + [(message, response)]
except Exception as e:
logger.error(f"Chat error: {str(e)}")
yield history + [(message, f"Error: {str(e)}")]
def create_interface():
app = TxAgentApp()
with gr.Blocks(
title="TxAgent",
css="""
.gradio-container {max-width: 900px !important}
"""
) as demo:
gr.Markdown("""
# 🧠 TxAgent: Therapeutic Reasoning AI
### (Using pre-loaded embeddings)
""")
with gr.Row():
init_btn = gr.Button("Initialize Model", variant="primary")
init_status = gr.Textbox(label="Status", interactive=False)
chatbot = gr.Chatbot(height=500, label="Conversation")
msg = gr.Textbox(label="Your clinical question")
clear_btn = gr.Button("Clear Chat")
gr.Examples(
examples=[
"How to adjust Journavx for renal impairment?",
"Xolremdi and Prozac interaction in WHIM syndrome?",
"Alternative to Warfarin for patient with amiodarone?"
],
inputs=msg
)
init_btn.click(
fn=app.initialize,
outputs=init_status
)
msg.submit(
fn=app.chat,
inputs=[msg, chatbot],
outputs=chatbot
)
clear_btn.click(
fn=lambda: ([], ""),
outputs=[chatbot, msg]
)
return demo
if __name__ == "__main__":
try:
logger.info("Starting application...")
# Verify embedding file exists
if not os.path.exists(CONFIG["embedding_filename"]):
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
logger.info("Please ensure the file is in the root directory")
else:
logger.info(f"Found embedding file: {CONFIG['embedding_filename']}")
# Prepare tool files
prepare_tool_files()
# Launch interface
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise |