File size: 8,197 Bytes
4b0f1a8 167b103 b8c0ae3 59ced24 d97b01f 167b103 35da672 12efdad 59ced24 58353ee 59ced24 167b103 35da672 12efdad 70839bb 58353ee 167b103 58353ee 167b103 35da672 59ced24 35da672 58353ee 35da672 037141b 35da672 58353ee 59ced24 58353ee 59ced24 35da672 59ced24 35da672 59ced24 12efdad 59ced24 4b0f1a8 12efdad 59ced24 4b0f1a8 59ced24 167b103 4b0f1a8 35da672 4b0f1a8 59ced24 167b103 4b0f1a8 35da672 59ced24 35da672 4b0f1a8 35da672 167b103 4b0f1a8 35da672 167b103 4b0f1a8 59ced24 4b0f1a8 35da672 167b103 4b0f1a8 e014e82 4b0f1a8 167b103 92abf33 4b0f1a8 e014e82 58353ee 59ced24 4b0f1a8 35da672 59ced24 4b0f1a8 59ced24 35da672 167b103 4b0f1a8 59ced24 35da672 167b103 35da672 167b103 8e533b3 70839bb 35da672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from huggingface_hub import hf_hub_download, snapshot_download
from tooluniverse import ToolUniverse
from tqdm import tqdm
import time
# Configuration
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"local_dir": "./models",
"tool_files": {
"new_tool": "./data/new_tool.json"
},
"download_timeout": 300, # Increased timeout to 5 minutes
"max_retries": 3
}
# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def prepare_tool_files():
os.makedirs("./data", exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
logger.info("Generating tool list using ToolUniverse...")
tu = ToolUniverse()
tools = tu.get_all_tools()
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
def download_with_retry(repo_id, local_dir):
retry_count = 0
while retry_count < CONFIG["max_retries"]:
try:
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
resume_download=True,
local_dir_use_symlinks=False,
timeout=CONFIG["download_timeout"]
)
return True
except Exception as e:
retry_count += 1
logger.error(f"Attempt {retry_count} failed for {repo_id}: {str(e)}")
if retry_count < CONFIG["max_retries"]:
wait_time = 10 * retry_count
logger.info(f"Waiting {wait_time} seconds before retry...")
time.sleep(wait_time)
return False
def download_model_files():
os.makedirs(CONFIG["local_dir"], exist_ok=True)
logger.info("Downloading model files...")
# Download main model
logger.info(f"Downloading {CONFIG['model_name']}...")
if not download_with_retry(
CONFIG["model_name"],
os.path.join(CONFIG["local_dir"], CONFIG["model_name"])
):
raise RuntimeError(f"Failed to download {CONFIG['model_name']} after {CONFIG['max_retries']} attempts")
# Download RAG model
logger.info(f"Downloading {CONFIG['rag_model_name']}...")
if not download_with_retry(
CONFIG["rag_model_name"],
os.path.join(CONFIG["local_dir"], CONFIG["rag_model_name"])
):
raise RuntimeError(f"Failed to download {CONFIG['rag_model_name']} after {CONFIG['max_retries']} attempts")
logger.info("All model files downloaded successfully")
def load_embeddings(agent):
embedding_path = CONFIG["embedding_filename"]
if os.path.exists(embedding_path):
logger.info("✅ Loading pre-generated embeddings file")
try:
embeddings = torch.load(embedding_path)
agent.rag_model.tool_desc_embedding = embeddings
return
except Exception as e:
logger.error(f"Failed to load embeddings: {e}")
# Fall through to generate new embeddings
logger.info("Generating tool embeddings...")
try:
tools = agent.tooluniverse.get_all_tools()
descriptions = [tool["description"] for tool in tools]
embeddings = agent.rag_model.generate_embeddings(descriptions)
torch.save(embeddings, embedding_path)
agent.rag_model.tool_desc_embedding = embeddings
logger.info(f"Embeddings saved to {embedding_path}")
except Exception as e:
logger.error(f"Failed to generate embeddings: {e}")
raise
class TxAgentApp:
def __init__(self):
self.agent = None
self.is_initialized = False
def initialize(self):
if self.is_initialized:
return "Already initialized"
try:
logger.info("Initializing TxAgent...")
self.agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=["DirectResponse", "RequireClarification"]
)
logger.info("Initializing models...")
self.agent.init_model()
logger.info("Loading embeddings...")
load_embeddings(self.agent)
self.is_initialized = True
logger.info("✅ TxAgent initialized successfully")
return "✅ TxAgent initialized successfully"
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
return f"❌ Initialization failed: {str(e)}"
def chat(self, message, history):
if not self.is_initialized:
return history + [(message, "⚠️ Error: Model not initialized. Please click 'Initialize Model' first.")]
try:
response = ""
for chunk in self.agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_tokens=8192,
multi_agent=False,
conversation=[],
max_round=30
):
response += chunk
return history + [(message, response)]
except Exception as e:
logger.error(f"Chat error: {str(e)}")
return history + [(message, f"Error: {str(e)}")]
def create_interface():
app = TxAgentApp()
with gr.Blocks(title="TxAgent", css=".gradio-container {max-width: 900px !important}") as demo:
gr.Markdown("""
# 🧠 TxAgent: Therapeutic Reasoning AI
### A specialized AI for clinical decision support and therapeutic reasoning
""")
with gr.Row():
init_btn = gr.Button("Initialize Model", variant="primary")
init_status = gr.Textbox(label="Initialization Status", interactive=False)
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(height=600, label="Conversation", bubble_full_width=False)
msg = gr.Textbox(label="Your Question", placeholder="Enter your clinical question here...")
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
gr.Markdown("### Example Questions:")
gr.Examples(
examples=[
"How to adjust Journavx dosage for hepatic impairment?",
"Is Xolremdi safe with Prozac for WHIM syndrome?",
"Warfarin-Amiodarone contraindications?",
"Alternative treatments for EGFR-positive NSCLC?"
],
inputs=msg,
label="Click to try"
)
init_btn.click(
fn=app.initialize,
outputs=init_status,
api_name="initialize"
)
msg.submit(
fn=app.chat,
inputs=[msg, chatbot],
outputs=chatbot,
api_name="chat"
)
submit_btn.click(
fn=app.chat,
inputs=[msg, chatbot],
outputs=chatbot
)
return demo
if __name__ == "__main__":
try:
logger.info("Preparing tool files...")
prepare_tool_files()
logger.info("Downloading model files (if needed)...")
download_model_files()
logger.info("Launching interface...")
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise |