File size: 8,197 Bytes
4b0f1a8
167b103
 
b8c0ae3
59ced24
 
d97b01f
167b103
35da672
 
12efdad
59ced24
 
 
 
58353ee
59ced24
 
167b103
35da672
 
 
12efdad
70839bb
58353ee
167b103
 
 
 
 
 
58353ee
167b103
 
 
 
 
 
35da672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ced24
 
35da672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58353ee
35da672
 
 
 
 
 
 
 
037141b
35da672
58353ee
59ced24
58353ee
 
 
59ced24
35da672
59ced24
35da672
59ced24
12efdad
59ced24
4b0f1a8
 
 
12efdad
59ced24
4b0f1a8
59ced24
167b103
4b0f1a8
35da672
4b0f1a8
59ced24
 
 
 
 
 
 
167b103
4b0f1a8
35da672
59ced24
35da672
 
4b0f1a8
35da672
167b103
4b0f1a8
35da672
167b103
4b0f1a8
59ced24
4b0f1a8
35da672
167b103
4b0f1a8
e014e82
4b0f1a8
167b103
 
92abf33
 
4b0f1a8
 
 
 
 
e014e82
58353ee
59ced24
4b0f1a8
35da672
59ced24
4b0f1a8
 
59ced24
35da672
 
 
 
 
167b103
4b0f1a8
59ced24
35da672
167b103
35da672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167b103
8e533b3
70839bb
 
35da672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from huggingface_hub import hf_hub_download, snapshot_download
from tooluniverse import ToolUniverse
from tqdm import tqdm
import time

# Configuration
CONFIG = {
    "model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
    "rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
    "embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
    "local_dir": "./models",
    "tool_files": {
        "new_tool": "./data/new_tool.json"
    },
    "download_timeout": 300,  # Increased timeout to 5 minutes
    "max_retries": 3
}

# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def prepare_tool_files():
    os.makedirs("./data", exist_ok=True)
    if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
        logger.info("Generating tool list using ToolUniverse...")
        tu = ToolUniverse()
        tools = tu.get_all_tools()
        with open(CONFIG["tool_files"]["new_tool"], "w") as f:
            json.dump(tools, f, indent=2)
        logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")

def download_with_retry(repo_id, local_dir):
    retry_count = 0
    while retry_count < CONFIG["max_retries"]:
        try:
            snapshot_download(
                repo_id=repo_id,
                local_dir=local_dir,
                resume_download=True,
                local_dir_use_symlinks=False,
                timeout=CONFIG["download_timeout"]
            )
            return True
        except Exception as e:
            retry_count += 1
            logger.error(f"Attempt {retry_count} failed for {repo_id}: {str(e)}")
            if retry_count < CONFIG["max_retries"]:
                wait_time = 10 * retry_count
                logger.info(f"Waiting {wait_time} seconds before retry...")
                time.sleep(wait_time)
    return False

def download_model_files():
    os.makedirs(CONFIG["local_dir"], exist_ok=True)
    logger.info("Downloading model files...")

    # Download main model
    logger.info(f"Downloading {CONFIG['model_name']}...")
    if not download_with_retry(
        CONFIG["model_name"],
        os.path.join(CONFIG["local_dir"], CONFIG["model_name"])
    ):
        raise RuntimeError(f"Failed to download {CONFIG['model_name']} after {CONFIG['max_retries']} attempts")

    # Download RAG model
    logger.info(f"Downloading {CONFIG['rag_model_name']}...")
    if not download_with_retry(
        CONFIG["rag_model_name"],
        os.path.join(CONFIG["local_dir"], CONFIG["rag_model_name"])
    ):
        raise RuntimeError(f"Failed to download {CONFIG['rag_model_name']} after {CONFIG['max_retries']} attempts")

    logger.info("All model files downloaded successfully")

def load_embeddings(agent):
    embedding_path = CONFIG["embedding_filename"]
    if os.path.exists(embedding_path):
        logger.info("✅ Loading pre-generated embeddings file")
        try:
            embeddings = torch.load(embedding_path)
            agent.rag_model.tool_desc_embedding = embeddings
            return
        except Exception as e:
            logger.error(f"Failed to load embeddings: {e}")
            # Fall through to generate new embeddings

    logger.info("Generating tool embeddings...")
    try:
        tools = agent.tooluniverse.get_all_tools()
        descriptions = [tool["description"] for tool in tools]
        embeddings = agent.rag_model.generate_embeddings(descriptions)
        torch.save(embeddings, embedding_path)
        agent.rag_model.tool_desc_embedding = embeddings
        logger.info(f"Embeddings saved to {embedding_path}")
    except Exception as e:
        logger.error(f"Failed to generate embeddings: {e}")
        raise

class TxAgentApp:
    def __init__(self):
        self.agent = None
        self.is_initialized = False

    def initialize(self):
        if self.is_initialized:
            return "Already initialized"

        try:
            logger.info("Initializing TxAgent...")
            self.agent = TxAgent(
                CONFIG["model_name"],
                CONFIG["rag_model_name"],
                tool_files_dict=CONFIG["tool_files"],
                force_finish=True,
                enable_checker=True,
                step_rag_num=10,
                seed=100,
                additional_default_tools=["DirectResponse", "RequireClarification"]
            )
            logger.info("Initializing models...")
            self.agent.init_model()
            logger.info("Loading embeddings...")
            load_embeddings(self.agent)
            self.is_initialized = True
            logger.info("✅ TxAgent initialized successfully")
            return "✅ TxAgent initialized successfully"
        except Exception as e:
            logger.error(f"Initialization failed: {str(e)}")
            return f"❌ Initialization failed: {str(e)}"

    def chat(self, message, history):
        if not self.is_initialized:
            return history + [(message, "⚠️ Error: Model not initialized. Please click 'Initialize Model' first.")]

        try:
            response = ""
            for chunk in self.agent.run_gradio_chat(
                message=message,
                history=history,
                temperature=0.3,
                max_new_tokens=1024,
                max_tokens=8192,
                multi_agent=False,
                conversation=[],
                max_round=30
            ):
                response += chunk

            return history + [(message, response)]
        except Exception as e:
            logger.error(f"Chat error: {str(e)}")
            return history + [(message, f"Error: {str(e)}")]

def create_interface():
    app = TxAgentApp()
    with gr.Blocks(title="TxAgent", css=".gradio-container {max-width: 900px !important}") as demo:
        gr.Markdown("""
        # 🧠 TxAgent: Therapeutic Reasoning AI
        ### A specialized AI for clinical decision support and therapeutic reasoning
        """)

        with gr.Row():
            init_btn = gr.Button("Initialize Model", variant="primary")
            init_status = gr.Textbox(label="Initialization Status", interactive=False)

        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(height=600, label="Conversation", bubble_full_width=False)
                msg = gr.Textbox(label="Your Question", placeholder="Enter your clinical question here...")
                submit_btn = gr.Button("Submit", variant="primary")
            with gr.Column(scale=1):
                gr.Markdown("### Example Questions:")
                gr.Examples(
                    examples=[
                        "How to adjust Journavx dosage for hepatic impairment?",
                        "Is Xolremdi safe with Prozac for WHIM syndrome?",
                        "Warfarin-Amiodarone contraindications?",
                        "Alternative treatments for EGFR-positive NSCLC?"
                    ],
                    inputs=msg,
                    label="Click to try"
                )

        init_btn.click(
            fn=app.initialize,
            outputs=init_status,
            api_name="initialize"
        )
        msg.submit(
            fn=app.chat,
            inputs=[msg, chatbot],
            outputs=chatbot,
            api_name="chat"
        )
        submit_btn.click(
            fn=app.chat,
            inputs=[msg, chatbot],
            outputs=chatbot
        )

    return demo

if __name__ == "__main__":
    try:
        logger.info("Preparing tool files...")
        prepare_tool_files()
        
        logger.info("Downloading model files (if needed)...")
        download_model_files()
        
        logger.info("Launching interface...")
        interface = create_interface()
        interface.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False,
            show_error=True
        )
    except Exception as e:
        logger.error(f"Application failed to start: {str(e)}")
        raise