File size: 5,446 Bytes
4b0f1a8
167b103
 
b8c0ae3
59ced24
 
167b103
 
12efdad
59ced24
 
 
 
167b103
59ced24
 
167b103
4b0f1a8
12efdad
70839bb
167b103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ced24
 
 
167b103
59ced24
 
 
 
 
167b103
59ced24
 
 
 
 
167b103
59ced24
 
 
 
 
 
 
 
 
 
 
12efdad
59ced24
 
167b103
59ced24
 
 
167b103
59ced24
 
 
167b103
 
59ced24
 
167b103
59ced24
 
 
12efdad
59ced24
4b0f1a8
 
 
12efdad
59ced24
4b0f1a8
59ced24
167b103
4b0f1a8
 
59ced24
 
 
 
 
 
 
167b103
4b0f1a8
59ced24
 
4b0f1a8
167b103
4b0f1a8
167b103
4b0f1a8
59ced24
4b0f1a8
167b103
 
4b0f1a8
e014e82
4b0f1a8
167b103
 
92abf33
 
4b0f1a8
 
 
 
 
e014e82
167b103
59ced24
4b0f1a8
59ced24
4b0f1a8
 
59ced24
 
167b103
 
4b0f1a8
59ced24
 
167b103
 
59ced24
 
167b103
4b0f1a8
59ced24
 
 
 
 
 
4b0f1a8
167b103
 
 
 
 
8e533b3
70839bb
 
167b103
59ced24
 
167b103
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from huggingface_hub import hf_hub_download, snapshot_download
from tooluniverse import ToolUniverse

# Configuration
CONFIG = {
    "model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
    "rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
    "embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding.pt",
    "local_dir": "./models",
    "tool_files": {
        "new_tool": "./data/new_tool.json"
    }
}

# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def prepare_tool_files():
    os.makedirs("./data", exist_ok=True)
    if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
        logger.info("Generating tool list using ToolUniverse...")
        tu = ToolUniverse()
        tools = tu.get_all_tools()
        with open(CONFIG["tool_files"]["new_tool"], "w") as f:
            json.dump(tools, f, indent=2)
        logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")


def download_model_files():
    os.makedirs(CONFIG["local_dir"], exist_ok=True)
    print("Downloading model files...")

    snapshot_download(
        repo_id=CONFIG["model_name"],
        local_dir=os.path.join(CONFIG["local_dir"], CONFIG["model_name"]),
        resume_download=True
    )

    snapshot_download(
        repo_id=CONFIG["rag_model_name"],
        local_dir=os.path.join(CONFIG["local_dir"], CONFIG["rag_model_name"]),
        resume_download=True
    )

    try:
        hf_hub_download(
            repo_id=CONFIG["rag_model_name"],
            filename=CONFIG["embedding_filename"],
            local_dir=CONFIG["local_dir"],
            resume_download=True
        )
        print("Embeddings file downloaded successfully")
    except Exception as e:
        print(f"Could not download embeddings file: {e}")
        print("Will attempt to generate it instead")

def generate_embeddings(agent):
    embedding_path = os.path.join(CONFIG["local_dir"], CONFIG["embedding_filename"])

    if os.path.exists(embedding_path):
        print("Embeddings file already exists")
        return

    print("Generating missing tool embeddings...")
    try:
        tools = agent.tooluniverse.get_all_tools()
        descriptions = [tool["description"] for tool in tools]
        embeddings = agent.rag_model.generate_embeddings(descriptions)
        torch.save(embeddings, embedding_path)
        agent.rag_model.tool_desc_embedding = embeddings
        print(f"Embeddings saved to {embedding_path}")
    except Exception as e:
        print(f"Failed to generate embeddings: {e}")
        raise

class TxAgentApp:
    def __init__(self):
        self.agent = None
        self.is_initialized = False

    def initialize(self):
        if self.is_initialized:
            return "Already initialized"

        try:
            self.agent = TxAgent(
                CONFIG["model_name"],
                CONFIG["rag_model_name"],
                tool_files_dict=CONFIG["tool_files"],
                force_finish=True,
                enable_checker=True,
                step_rag_num=10,
                seed=100,
                additional_default_tools=["DirectResponse", "RequireClarification"]
            )
            self.agent.init_model()
            generate_embeddings(self.agent)
            self.is_initialized = True
            return "✅ TxAgent initialized successfully"
        except Exception as e:
            return f"❌ Initialization failed: {str(e)}"

    def chat(self, message, history):
        if not self.is_initialized:
            return history + [(message, "⚠️ Error: Model not initialized")]

        try:
            response = ""
            for chunk in self.agent.run_gradio_chat(
                message=message,
                history=history,
                temperature=0.3,
                max_new_tokens=1024,
                max_tokens=8192,
                multi_agent=False,
                conversation=[],
                max_round=30
            ):
                response += chunk

            return history + [(message, response)]
        except Exception as e:
            return history + [(message, f"Error: {str(e)}")]

def create_interface():
    app = TxAgentApp()
    with gr.Blocks(title="TxAgent") as demo:
        gr.Markdown("# 🧠 TxAgent: Therapeutic Reasoning AI")

        with gr.Row():
            init_btn = gr.Button("Initialize Model", variant="primary")
            init_status = gr.Textbox(label="Initialization Status")

        chatbot = gr.Chatbot(height=600, label="Conversation")
        msg = gr.Textbox(label="Your Question")
        submit_btn = gr.Button("Submit")

        gr.Examples(
            examples=[
                "How to adjust Journavx dosage for hepatic impairment?",
                "Is Xolremdi safe with Prozac for WHIM syndrome?",
                "Warfarin-Amiodarone contraindications?"
            ],
            inputs=msg
        )

        init_btn.click(fn=app.initialize, outputs=init_status)
        msg.submit(fn=app.chat, inputs=[msg, chatbot], outputs=chatbot)
        submit_btn.click(fn=app.chat, inputs=[msg, chatbot], outputs=chatbot)

    return demo

if __name__ == "__main__":
    prepare_tool_files()
    download_model_files()
    interface = create_interface()
    interface.launch(server_name="0.0.0.0", server_port=7860, share=False)