File size: 5,107 Bytes
1155704
8c814cd
47f0902
9aeb1dd
47f0902
40ad293
6ba76fa
0cec600
9a0af2f
6ba76fa
40ad293
0cec600
 
1155704
0cec600
40ad293
0cec600
 
40ad293
0cec600
 
40ad293
47f0902
 
0cec600
47f0902
 
0cec600
47f0902
 
0cec600
47f0902
0cec600
 
47f0902
0cec600
 
 
 
 
 
 
 
 
 
 
 
 
1155704
 
0cec600
 
40ad293
47f0902
 
0cec600
47f0902
0cec600
 
47f0902
 
 
 
0cec600
40ad293
 
6309d92
40ad293
6309d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ad293
6309d92
 
 
 
 
 
 
 
 
40ad293
6309d92
 
 
 
 
 
47f0902
 
6309d92
 
40ad293
6309d92
40ad293
 
 
 
6309d92
40ad293
6309d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ad293
 
6309d92
 
 
 
 
 
 
 
 
 
9a0af2f
6309d92
9a0af2f
6309d92
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import sys
import random
import gradio as gr

# Add `src` to import path
sys.path.append(os.path.join(os.path.dirname(__file__), "src"))

from txagent.txagent import TxAgent

# === Environment setup ===
current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# === UI constants ===
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools</h1>
</div>
'''

INTRO = "Precision therapeutics require multimodal adaptive models..."
LICENSE = "DISCLAIMER: THIS WEBSITE DOES NOT PROVIDE MEDICAL ADVICE..."

PLACEHOLDER = '''
<div style="padding: 30px; text-align: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">TxAgent</h1>
   <p style="font-size: 18px;">Click clear ๐Ÿ—‘๏ธ before asking a new question.</p>
   <p style="font-size: 18px;">Click retry ๐Ÿ”„ to see another answer.</p>
</div>
'''

css = """
h1 { text-align: center; }
#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
.gradio-accordion {
    margin-top: 0px !important;
    margin-bottom: 0px !important;
}
"""

chat_css = """
.gr-button { font-size: 20px !important; }
.gr-button svg { width: 32px !important; height: 32px !important; }
"""

# === Model and tool config ===
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
new_tool_files = {
    "new_tool": os.path.join(current_dir, "data", "new_tool.json")
}

question_examples = [
    ["Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering moderate hepatic impairment?"],
    ["A 30-year-old patient is on Prozac for depression and now diagnosed with WHIM syndrome. Is Xolremdi suitable?"]
]

agent = None  # global agent initialized later


# === Create Gradio UI ===
def create_ui():
    with gr.Blocks(css=css) as demo:
        gr.Markdown(DESCRIPTION)
        gr.Markdown(INTRO)

        temperature = gr.Slider(0, 1, step=0.1, value=0.3, label="Temperature")
        max_new_tokens = gr.Slider(128, 4096, step=1, value=1024, label="Max New Tokens")
        max_tokens = gr.Slider(128, 32000, step=1, value=8192, label="Max Total Tokens")
        max_round = gr.Slider(1, 50, step=1, value=30, label="Max Rounds")
        multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False)
        conversation_state = gr.State([])

        chatbot = gr.Chatbot(
            label="TxAgent",
            placeholder=PLACEHOLDER,
            height=700,
            type="messages",
            show_copy_button=True
        )

        # === Retry handler (fixed)
        def handle_retry(history, retry_data, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
            agent.update_parameters(seed=random.randint(0, 10000))
            new_history = history[:retry_data.index]
            prompt = history[retry_data.index]["content"]
            result = agent.run_gradio_chat(
                new_history + [{"role": "user", "content": prompt}],
                temperature, max_new_tokens, max_tokens,
                multi_agent, conversation, max_round
            )
            if hasattr(result, "__iter__") and not isinstance(result, (str, list, dict)):
                result = list(result)
            return result

        chatbot.retry(
            handle_retry,
            chatbot, chatbot,
            temperature, max_new_tokens, max_tokens,
            multi_agent, conversation_state, max_round
        )

        # === Chat handler
        def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
            result = agent.run_gradio_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round)
            if hasattr(result, "__iter__") and not isinstance(result, (str, list, dict)):
                result = list(result)
            return result

        # === Chat Interface setup
        gr.ChatInterface(
            fn=handle_chat,
            chatbot=chatbot,
            additional_inputs=[
                temperature, max_new_tokens, max_tokens,
                multi_agent, conversation_state, max_round
            ],
            examples=question_examples,
            css=chat_css,
            cache_examples=False,
            fill_height=True,
            fill_width=True,
            stop_btn=True
        )

        gr.Markdown(LICENSE)
    return demo


# === HF Spaces + vLLM-safe entrypoint ===
if __name__ == "__main__":
    agent = TxAgent(
        model_name,
        rag_model_name,
        tool_files_dict=new_tool_files,
        force_finish=True,
        enable_checker=True,
        step_rag_num=10,
        seed=100,
        additional_default_tools=["DirectResponse", "RequireClarification"]
    )
    agent.init_model()

    demo = create_ui()
    demo.launch()