File size: 9,519 Bytes
4b0f1a8
167b103
 
b8c0ae3
59ced24
167b103
410d25f
929325a
410d25f
 
 
12efdad
f2d6e83
59ced24
 
a87f861
f2d6e83
59ced24
167b103
a87f861
12efdad
70839bb
58353ee
849209d
 
 
 
167b103
 
 
929325a
167b103
 
58353ee
167b103
 
 
 
 
 
929325a
410d25f
 
 
 
 
 
 
 
 
1ee16da
 
 
410d25f
1ee16da
410d25f
 
929325a
1ee16da
410d25f
1ee16da
410d25f
 
 
 
 
 
929325a
410d25f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee16da
 
410d25f
1ee16da
 
410d25f
1ee16da
 
 
 
 
12efdad
59ced24
4b0f1a8
 
 
12efdad
929325a
 
4b0f1a8
849209d
 
4b0f1a8
f2d6e83
1ee16da
63950ea
f2d6e83
63950ea
929325a
 
63950ea
 
 
 
 
a87f861
63950ea
 
dffc0b0
63950ea
 
 
dffc0b0
 
4b0f1a8
35da672
167b103
4b0f1a8
929325a
 
 
 
 
 
 
 
 
 
 
4b0f1a8
929325a
849209d
4b0f1a8
929325a
 
 
 
 
 
 
 
e014e82
4b0f1a8
167b103
929325a
92abf33
 
929325a
 
 
4b0f1a8
 
929325a
c3cd8cd
929325a
 
849209d
4b0f1a8
35da672
929325a
4b0f1a8
929325a
 
59ced24
849209d
 
 
 
 
 
 
35da672
63950ea
f2d6e83
35da672
849209d
4b0f1a8
59ced24
849209d
 
1ee16da
 
 
c3cd8cd
1ee16da
63950ea
849209d
 
 
 
 
 
 
 
63950ea
849209d
 
929325a
 
c3cd8cd
 
 
35da672
c3cd8cd
 
35da672
849209d
35da672
929325a
35da672
 
929325a
 
 
35da672
849209d
 
 
 
 
 
8e533b3
70839bb
 
35da672
63950ea
849209d
dffc0b0
 
 
 
 
 
 
 
35da672
 
849209d
35da672
 
 
 
849209d
35da672
 
dffc0b0
35da672
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import json
import logging
import torch
import gradio as gr
from tooluniverse import ToolUniverse
import warnings
from typing import List, Dict, Any

# Suppress specific warnings
warnings.filterwarnings("ignore", category=UserWarning)

# Configuration with hardcoded embedding file
CONFIG = {
    "model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
    "rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
    "embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
    "tool_files": {
        "new_tool": "./data/new_tool.json"
    }
}

# Logging setup
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

def prepare_tool_files():
    """Ensure tool files exist and are populated"""
    os.makedirs("./data", exist_ok=True)
    if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
        logger.info("Generating tool list using ToolUniverse...")
        tu = ToolUniverse()
        tools = tu.get_all_tools()
        with open(CONFIG["tool_files"]["new_tool"], "w") as f:
            json.dump(tools, f, indent=2)
        logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")

def safe_load_embeddings(filepath: str) -> Any:
    """Safely load embeddings with proper weights_only handling"""
    try:
        # First try with weights_only=True (secure mode)
        return torch.load(filepath, weights_only=True)
    except Exception as e:
        logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}")
        # If that fails, try with weights_only=False (less secure)
        return torch.load(filepath, weights_only=False)

def patch_embedding_loading():
    """Monkey-patch the embedding loading functionality"""
    try:
        from txagent.toolrag import ToolRAGModel
        
        original_load = ToolRAGModel.load_tool_desc_embedding
        
        def patched_load(self, tooluniverse: ToolUniverse) -> bool:
            try:
                if not os.path.exists(CONFIG["embedding_filename"]):
                    logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
                    return False
                
                # Load embeddings safely
                self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"])
                
                # Handle tool count mismatch
                tools = tooluniverse.get_all_tools()  # Use get_all_tools() instead of direct access
                current_count = len(tools)
                embedding_count = len(self.tool_desc_embedding)
                
                if current_count != embedding_count:
                    logger.warning(f"Tool count mismatch (tools: {current_count}, embeddings: {embedding_count})")
                    
                    if current_count < embedding_count:
                        self.tool_desc_embedding = self.tool_desc_embedding[:current_count]
                        logger.info(f"Truncated embeddings to match {current_count} tools")
                    else:
                        last_embedding = self.tool_desc_embedding[-1]
                        padding = [last_embedding] * (current_count - embedding_count)
                        self.tool_desc_embedding = torch.cat(
                            [self.tool_desc_embedding] + padding
                        )
                        logger.info(f"Padded embeddings to match {current_count} tools")
                
                return True
                
            except Exception as e:
                logger.error(f"Failed to load embeddings: {str(e)}")
                return False
        
        # Apply the patch
        ToolRAGModel.load_tool_desc_embedding = patched_load
        logger.info("Successfully patched embedding loading")
        
    except Exception as e:
        logger.error(f"Failed to patch embedding loading: {str(e)}")
        raise

class TxAgentApp:
    def __init__(self):
        self.agent = None
        self.is_initialized = False

    def initialize(self) -> str:
        """Initialize the TxAgent with all required components"""
        if self.is_initialized:
            return "✅ Already initialized"
        
        try:
            # Apply our patch before initialization
            patch_embedding_loading()
            
            logger.info("Initializing TxAgent...")
            self.agent = TxAgent(
                model_name=CONFIG["model_name"],
                rag_model_name=CONFIG["rag_model_name"],
                tool_files_dict=CONFIG["tool_files"],
                force_finish=True,
                enable_checker=True,
                step_rag_num=10,
                seed=100,
                additional_default_tools=["DirectResponse", "RequireClarification"]
            )
            
            logger.info("Loading models...")
            self.agent.init_model()
            
            self.is_initialized = True
            return "✅ TxAgent initialized successfully"
            
        except Exception as e:
            logger.error(f"Initialization failed: {str(e)}")
            return f"❌ Initialization failed: {str(e)}"

    def chat(self, message: str, history: List[List[str]]) -> List[List[str]]:
        """
        Handle chat interactions with the TxAgent
        
        Args:
            message: User input message
            history: Chat history in format [[user_msg, bot_msg], ...]
            
        Returns:
            Updated chat history
        """
        if not self.is_initialized:
            return history + [["", "⚠️ Please initialize the model first"]]
        
        try:
            # Convert history to the format TxAgent expects
            tx_history = []
            for user_msg, bot_msg in history:
                tx_history.append({"role": "user", "content": user_msg})
                if bot_msg:  # Only add bot response if it exists
                    tx_history.append({"role": "assistant", "content": bot_msg})
            
            # Generate response
            response = ""
            for chunk in self.agent.run_gradio_chat(
                message=message,
                history=tx_history,
                temperature=0.3,
                max_new_tokens=1024,
                max_token=8192,  # Note: Using max_token instead of max_length
                call_agent=False,
                conversation=None,
                max_round=30
            ):
                response = chunk  # Get the final response
            
            # Format response for Gradio Chatbot
            return history + [[message, response]]
                
        except Exception as e:
            logger.error(f"Chat error: {str(e)}")
            return history + [["", f"Error: {str(e)}"]]

def create_interface() -> gr.Blocks:
    """Create the Gradio interface"""
    app = TxAgentApp()
    
    with gr.Blocks(
        title="TxAgent",
        css="""
        .gradio-container {max-width: 900px !important}
        """
    ) as demo:
        gr.Markdown("""
        # 🧠 TxAgent: Therapeutic Reasoning AI
        ### (Using pre-loaded embeddings)
        """)
        
        with gr.Row():
            init_btn = gr.Button("Initialize Model", variant="primary")
            init_status = gr.Textbox(label="Status", interactive=False)
        
        chatbot = gr.Chatbot(
            height=500, 
            label="Conversation",
            bubble_full_width=False
        )
        msg = gr.Textbox(label="Your clinical question")
        clear_btn = gr.Button("Clear Chat")
        
        gr.Examples(
            examples=[
                "How to adjust Journavx for renal impairment?",
                "Xolremdi and Prozac interaction in WHIM syndrome?",
                "Alternative to Warfarin for patient with amiodarone?"
            ],
            inputs=msg
        )
        
        def wrapper_initialize() -> tuple:
            """Wrapper for initialization with UI updates"""
            status = app.initialize()
            return status, gr.update(interactive=False)
        
        init_btn.click(
            fn=wrapper_initialize,
            outputs=[init_status, init_btn]
        )
        
        msg.submit(
            fn=app.chat,
            inputs=[msg, chatbot],
            outputs=chatbot
        ).then(
            lambda: "",  # Clear message box
            outputs=msg
        )
        
        clear_btn.click(
            fn=lambda: ([], ""),
            outputs=[chatbot, msg]
        )
    
    return demo

if __name__ == "__main__":
    try:
        logger.info("Starting application...")
        
        # Verify embedding file exists
        if not os.path.exists(CONFIG["embedding_filename"]):
            logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
            logger.info("Please ensure the file is in the root directory")
        else:
            logger.info(f"Found embedding file: {CONFIG['embedding_filename']}")
        
        # Prepare tool files
        prepare_tool_files()
        
        # Launch interface
        interface = create_interface()
        interface.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False
        )
    except Exception as e:
        logger.error(f"Application failed to start: {str(e)}")
        raise