File size: 6,136 Bytes
4b0f1a8 12efdad 4b0f1a8 12efdad 4b0f1a8 12efdad 4b0f1a8 12efdad 4b0f1a8 12efdad 70839bb 4b0f1a8 92abf33 4b0f1a8 92abf33 4b0f1a8 12efdad 4b0f1a8 92abf33 12efdad 4b0f1a8 a59a7be 12efdad 92abf33 4b0f1a8 92abf33 8e533b3 4b0f1a8 a59a7be 4b0f1a8 a59a7be 4b0f1a8 a59a7be 92abf33 a59a7be 4b0f1a8 a59a7be 92abf33 4b0f1a8 92abf33 4b0f1a8 a59a7be e014e82 4b0f1a8 92abf33 4b0f1a8 92abf33 4b0f1a8 e014e82 4b0f1a8 92abf33 4b0f1a8 e014e82 4b0f1a8 a59a7be 4b0f1a8 8e533b3 92abf33 4b0f1a8 92abf33 8e533b3 a59a7be 4b0f1a8 92abf33 e014e82 12efdad 4b0f1a8 92abf33 e014e82 8e533b3 4b0f1a8 e014e82 4b0f1a8 8e533b3 4b0f1a8 8e533b3 4b0f1a8 92abf33 a59a7be 4b0f1a8 92abf33 a59a7be 4b0f1a8 8e533b3 70839bb 4b0f1a8 70839bb a59a7be 4b0f1a8 a59a7be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
import gradio as gr
from txagent import TxAgent
# ========== Configuration ==========
current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Model configuration
MODEL_CONFIG = {
'model_name': 'mims-harvard/TxAgent-T1-Llama-3.1-8B',
'rag_model_name': 'mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B',
'tool_files': {'new_tool': os.path.join(current_dir, 'data', 'new_tool.json')},
'additional_tools': ['DirectResponse', 'RequireClarification'],
'default_params': {
'force_finish': True,
'enable_checker': True,
'step_rag_num': 10,
'seed': 100
}
}
# UI Configuration
UI_CONFIG = {
'description': '''
<div>
<h1 style="text-align: center;">TxAgent: Therapeutic Reasoning AI</h1>
<p style="text-align: center;">Precision therapeutics with multi-step reasoning</p>
</div>
''',
'disclaimer': '''
<div style="color: #666; font-size: 0.9em; margin-top: 20px;">
<strong>Disclaimer:</strong> For informational purposes only, not medical advice.
</div>
'''
}
# Example questions
EXAMPLE_QUESTIONS = [
"How should dosage be adjusted for hepatic impairment with Journavx?",
"Is Xolremdi suitable with Prozac for WHIM syndrome?",
"What are Warfarin-Amiodarone contraindications?"
]
# ========== Application Class ==========
class TxAgentApplication:
def __init__(self):
self.agent = None
self.is_initialized = False
self.initialization_error = None
def initialize_agent(self):
if self.is_initialized:
return "Model already initialized"
try:
# Initialize the agent
self.agent = TxAgent(
MODEL_CONFIG['model_name'],
MODEL_CONFIG['rag_model_name'],
tool_files_dict=MODEL_CONFIG['tool_files'],
**MODEL_CONFIG['default_params']
)
# Initialize model with error handling
try:
self.agent.init_model()
except Exception as e:
# Handle specific tool embedding error
if "No such file or directory" in str(e) and "tool_embedding" in str(e):
return ("Error: Missing tool embedding file. "
"Please ensure the RAG model files are properly downloaded.")
raise
self.is_initialized = True
self.initialization_error = None
return "TxAgent initialized successfully"
except Exception as e:
self.initialization_error = str(e)
return f"Initialization failed: {str(e)}"
def chat(self, message, chat_history):
if not self.is_initialized:
if self.initialization_error:
return chat_history + [(message, f"System Error: {self.initialization_error}")]
return chat_history + [(message, "Error: Please initialize the model first")]
try:
# Convert to messages format
messages = []
for user, assistant in chat_history:
messages.append({"role": "user", "content": user})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
# Get response
response = ""
for chunk in self.agent.run_gradio_chat(
messages,
temperature=0.3,
max_new_tokens=1024,
max_tokens=8192,
multi_agent=False,
conversation=[],
max_round=30
):
response += chunk
return chat_history + [(message, response)]
except Exception as e:
return chat_history + [(message, f"Error during processing: {str(e)}")]
# ========== Gradio Interface ==========
def create_interface():
app = TxAgentApplication()
with gr.Blocks(title="TxAgent", theme=gr.themes.Soft()) as demo:
gr.Markdown(UI_CONFIG['description'])
# Initialization
with gr.Row():
init_btn = gr.Button("Initialize TxAgent", variant="primary")
init_status = gr.Textbox(label="Status", interactive=False)
# Chat Interface
chatbot = gr.Chatbot(
height=600,
label="Conversation",
show_label=True,
show_copy_button=True
)
with gr.Row():
msg = gr.Textbox(
label="Your Question",
placeholder="Ask about drug interactions or treatments...",
scale=4,
container=False
)
submit_btn = gr.Button("Submit", variant="primary", scale=1)
# Examples
gr.Examples(
examples=EXAMPLE_QUESTIONS,
inputs=msg,
label="Try these examples:",
examples_per_page=3
)
gr.Markdown(UI_CONFIG['disclaimer'])
# Event Handlers
init_btn.click(
app.initialize_agent,
outputs=init_status
)
msg.submit(
app.chat,
[msg, chatbot],
chatbot
)
submit_btn.click(
app.chat,
[msg, chatbot],
chatbot
).then(
lambda: "", None, msg
)
return demo
# ========== Main Execution ==========
if __name__ == "__main__":
# Create and configure the interface
interface = create_interface()
# Launch configuration
launch_params = {
'server_name': '0.0.0.0',
'server_port': 7860,
'share': True
}
# Enable queue if needed (for production)
try:
interface.queue().launch(**launch_params)
except Exception as e:
print(f"Error launching interface: {e}")
interface.launch(**launch_params) # Fallback without queue |