File size: 6,019 Bytes
4b0f1a8 167b103 b8c0ae3 59ced24 167b103 12efdad dffc0b0 59ced24 a87f861 0e66976 59ced24 167b103 a87f861 12efdad 70839bb 58353ee 849209d 167b103 58353ee 167b103 35da672 dffc0b0 35da672 dffc0b0 59ced24 dffc0b0 12efdad 59ced24 4b0f1a8 12efdad 59ced24 4b0f1a8 849209d 4b0f1a8 dffc0b0 63950ea dffc0b0 63950ea a87f861 63950ea dffc0b0 63950ea dffc0b0 63950ea dffc0b0 4b0f1a8 35da672 167b103 4b0f1a8 59ced24 4b0f1a8 849209d 4b0f1a8 e014e82 4b0f1a8 167b103 92abf33 4b0f1a8 e014e82 849209d 4b0f1a8 35da672 849209d 4b0f1a8 59ced24 849209d 35da672 63950ea 35da672 849209d 4b0f1a8 59ced24 849209d 63950ea 849209d 63950ea 849209d 35da672 849209d 35da672 849209d 35da672 849209d 8e533b3 70839bb 35da672 63950ea 849209d dffc0b0 35da672 849209d 35da672 849209d 35da672 dffc0b0 35da672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from tooluniverse import ToolUniverse
# Configuration - Using your existing embedding file
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_e27fb393f3144ec28f620f33d4d79911.pt",
"tool_files": {
"new_tool": "./data/new_tool.json"
}
}
# Logging setup
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def prepare_tool_files():
os.makedirs("./data", exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
logger.info("Generating tool list using ToolUniverse...")
tu = ToolUniverse()
tools = tu.get_all_tools()
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
def load_embeddings(agent):
embedding_path = CONFIG["embedding_filename"]
try:
if os.path.exists(embedding_path):
logger.info(f"β
Loading existing embeddings from {embedding_path}")
embeddings = torch.load(embedding_path)
agent.rag_model.tool_desc_embedding = embeddings
return True
else:
logger.error(f"β Embedding file not found at {embedding_path}")
logger.info("Please ensure the embedding file is in the root directory")
return False
except Exception as e:
logger.error(f"Failed to load embeddings: {str(e)}")
return False
class TxAgentApp:
def __init__(self):
self.agent = None
self.is_initialized = False
def initialize(self):
if self.is_initialized:
return "β
Already initialized"
try:
logger.info("Initializing TxAgent...")
# Initialize TxAgent
self.agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=["DirectResponse", "RequireClarification"]
)
# Initialize models
logger.info("Loading models...")
self.agent.init_model()
# Load embeddings
logger.info("Loading embeddings...")
if not load_embeddings(self.agent):
return "β Failed to load embeddings - check logs"
self.is_initialized = True
return "β
TxAgent initialized successfully"
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
return f"β Initialization failed: {str(e)}"
def chat(self, message, history):
if not self.is_initialized:
return history + [(message, "β οΈ Please initialize the model first")]
try:
response = ""
for chunk in self.agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_tokens=8192,
multi_agent=False,
conversation=[],
max_round=30
):
response += chunk
yield history + [(message, response)]
except Exception as e:
logger.error(f"Chat error: {str(e)}")
yield history + [(message, f"Error: {str(e)}")]
def create_interface():
app = TxAgentApp()
with gr.Blocks(
title="TxAgent",
css="""
.gradio-container {max-width: 900px !important}
"""
) as demo:
gr.Markdown("""
# π§ TxAgent: Therapeutic Reasoning AI
""")
with gr.Row():
init_btn = gr.Button("Initialize Model", variant="primary")
init_status = gr.Textbox(label="Status", interactive=False)
chatbot = gr.Chatbot(height=500, label="Conversation")
msg = gr.Textbox(label="Your clinical question")
clear_btn = gr.Button("Clear Chat")
gr.Examples(
examples=[
"How to adjust Journavx for renal impairment?",
"Xolremdi and Prozac interaction in WHIM syndrome?",
"Alternative to Warfarin for patient with amiodarone?"
],
inputs=msg
)
init_btn.click(
fn=app.initialize,
outputs=init_status
)
msg.submit(
fn=app.chat,
inputs=[msg, chatbot],
outputs=chatbot
)
clear_btn.click(
fn=lambda: ([], ""),
outputs=[chatbot, msg]
)
return demo
if __name__ == "__main__":
try:
logger.info("Starting application...")
# Verify embedding file exists
if not os.path.exists(CONFIG["embedding_filename"]):
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
logger.info("Please ensure the file is in the root directory")
else:
logger.info(f"Found embedding file: {CONFIG['embedding_filename']}")
# Prepare tool files
prepare_tool_files()
# Launch interface
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise |