File size: 4,870 Bytes
1155704
8c814cd
47f0902
9aeb1dd
47f0902
 
8c814cd
 
 
 
 
0cec600
47f0902
0cec600
 
1155704
0cec600
47f0902
0cec600
 
 
 
 
47f0902
 
0cec600
47f0902
 
0cec600
47f0902
 
0cec600
47f0902
0cec600
 
47f0902
0cec600
 
 
 
 
 
 
 
 
 
 
 
 
1155704
 
0cec600
 
47f0902
 
 
0cec600
47f0902
0cec600
 
47f0902
 
 
 
0cec600
47f0902
1155704
47f0902
 
 
 
 
 
 
 
 
 
0cec600
47f0902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cec600
47f0902
1155704
 
 
 
47f0902
 
 
 
 
 
 
 
 
 
 
 
 
 
1155704
 
 
 
47f0902
 
0cec600
 
1155704
47f0902
1155704
 
47f0902
 
1155704
 
 
47f0902
 
 
 
0cec600
 
1155704
0cec600
47f0902
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import sys
import random
import gradio as gr
from datetime import datetime

# Add `src` directory to Python path to import your custom agent
sys.path.append(os.path.join(os.path.dirname(__file__), "src"))

# Import your TxAgent class from src/txagent/TxAgent.py
from txagent.TxAgent import TxAgent

# ==== Environment Setup ====
current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# ==== UI Content ====
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools </h1>
</div>
'''
INTRO = "Precision therapeutics require multimodal adaptive models..."
LICENSE = "DISCLAIMER: THIS WEBSITE DOES NOT PROVIDE MEDICAL ADVICE..."

PLACEHOLDER = '''
<div style="padding: 30px; text-align: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">TxAgent</h1>
   <p style="font-size: 18px;">Click clear ๐Ÿ—‘๏ธ before asking a new question.</p>
   <p style="font-size: 18px;">Click retry ๐Ÿ”„ to see another answer.</p>
</div>
'''

css = """
h1 { text-align: center; }
#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
.gradio-accordion {
    margin-top: 0px !important;
    margin-bottom: 0px !important;
}
"""

chat_css = """
.gr-button { font-size: 20px !important; }
.gr-button svg { width: 32px !important; height: 32px !important; }
"""

# ==== Model Settings ====
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
new_tool_files = {
    "new_tool": os.path.join(current_dir, "data", "new_tool.json")
}

question_examples = [
    ["Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering moderate hepatic impairment?"],
    ["A 30-year-old patient is on Prozac for depression and now diagnosed with WHIM syndrome. Is Xolremdi suitable?"]
]

# ====== Main Application Entrypoint ======
if __name__ == "__main__":
    # === Initialize the model (inside __main__) ===
    agent = TxAgent(
        model_name,
        rag_model_name,
        tool_files_dict=new_tool_files,
        force_finish=True,
        enable_checker=True,
        step_rag_num=10,
        seed=100,
        additional_default_tools=["DirectResponse", "RequireClarification"]
    )
    agent.init_model()

    # === Gradio interface logic ===
    def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
        return agent.run_gradio_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round)

    def update_seed():
        seed = random.randint(0, 10000)
        return agent.update_parameters(seed=seed)

    def handle_retry(history, retry_data: gr.RetryData, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
        update_seed()
        new_history = history[:retry_data.index]
        previous_prompt = history[retry_data.index]["content"]
        yield from agent.run_gradio_chat(
            new_history + [{"role": "user", "content": previous_prompt}],
            temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round
        )

    # ===== Build Gradio Interface =====
    with gr.Blocks(css=css) as demo:
        gr.Markdown(DESCRIPTION)
        gr.Markdown(INTRO)

        temperature = gr.Slider(0, 1, step=0.1, value=0.3, label="Temperature")
        max_new_tokens = gr.Slider(128, 4096, step=1, value=1024, label="Max New Tokens")
        max_tokens = gr.Slider(128, 32000, step=1, value=8192, label="Max Total Tokens")
        max_round = gr.Slider(1, 50, step=1, value=30, label="Max Rounds")
        multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False)
        conversation_state = gr.State([])

        chatbot = gr.Chatbot(
            label="TxAgent",
            placeholder=PLACEHOLDER,
            height=700,
            type="messages",
            show_copy_button=True
        )

        chatbot.retry(
            handle_retry,
            chatbot, chatbot,
            temperature, max_new_tokens, max_tokens,
            multi_agent, conversation_state, max_round
        )

        gr.ChatInterface(
            fn=handle_chat,
            chatbot=chatbot,
            additional_inputs=[
                temperature, max_new_tokens, max_tokens,
                multi_agent, conversation_state, max_round
            ],
            examples=question_examples,
            css=chat_css,
            cache_examples=False,
            fill_height=True,
            fill_width=True,
            stop_btn=True
        )

        gr.Markdown(LICENSE)

    demo.launch()